Article (Périodiques scientifiques)
Intelligent Blockchain-based Edge Computing via Deep Reinforcement Learning: Solutions and Challenges
Nguyen, Dinh C; NGUYEN, van Dinh; Ding, Ming et al.
2022In IEEE Network, 36 (6), p. 12-19
Peer reviewed vérifié par ORBi Dataset
 

Documents


Texte intégral
B-MEC_Final.pdf
Postprint Auteur (1.3 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mobile edge computing; blockchain; deep reinforcement learning.
Résumé :
[en] The convergence of mobile edge computing (MEC) and blockchain is transforming the current computing services in wireless Internet-of-Things networks, by enabling task offloading with security enhancement based on blockchain mining. Yet the existing approaches for these enabling technologies are isolated, providing only tailored solutions for specific services and scenarios. To fill this gap, we propose a novel cooperative task offloading and blockchain mining (TOBM) scheme for a blockchain-based MEC system, where each edge device not only handles computation tasks but also deals with block mining for improving system utility. To address the latency issues caused by the blockchain operation in MEC, we develop a new Proof-of-Reputation consensus mechanism based on a lightweight block verification strategy. To accommodate the highly dynamic environment and high-dimensional system state space, we apply a novel distributed deep reinforcement learning-based approach by using a multi-agent deep deterministic policy gradient algorithm. Experimental results demonstrate the superior performance of the proposed TOBM scheme in terms of enhanced system reward, improved offloading utility with lower blockchain mining latency, and better system utility, compared to the existing cooperative and non-cooperative schemes. The paper concludes with key technical challenges and possible directions for future blockchain-based MEC research.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Nguyen, Dinh C
NGUYEN, van Dinh ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Ding, Ming
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Pathirana, Pubudu N
Seneviratne, Aruna
Dobre, Octavia
Zomaya, Albert Y
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Intelligent Blockchain-based Edge Computing via Deep Reinforcement Learning: Solutions and Challenges
Date de publication/diffusion :
2022
Titre du périodique :
IEEE Network
ISSN :
0890-8044
eISSN :
1558-156X
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York
Volume/Tome :
36
Fascicule/Saison :
6
Pagination :
12-19
Peer reviewed :
Peer reviewed vérifié par ORBi
Jeu de données :
Disponible sur ORBilu :
depuis le 27 juin 2022

Statistiques


Nombre de vues
188 (dont 14 Unilu)
Nombre de téléchargements
133 (dont 3 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
13
OpenCitations
 
4
citations OpenAlex
 
14
citations WoS
 
12

Bibliographie


Publications similaires



Contacter ORBilu