Article (Périodiques scientifiques)
Sine-skewed toroidal distributions and their application in protein bioinformatics
LEY, Christophe; Ameijeiras-Alonso, Jose
2022In Biostatistics, 23 (3), p. 685–704
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1910.13293.pdf
Postprint Éditeur (5.23 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] In the bioinformatics field, there has been a growing interest in modeling dihedral angles of amino acids by viewing them as data on the torus. This has motivated, over the past years, new proposals of distributions on the torus. The main drawback of most of these models is that the related densities are (pointwise) symmetric, despite the fact that the data usually present asymmetric patterns. This motivates the need to find a new way of constructing asymmetric toroidal distributions starting from a symmetric distribution. We tackle this problem in this article by introducing the sine-skewed toroidal distributions. The general properties of the new models are derived. Based on the initial symmetric model, explicit expressions for the shape and dependence measures are obtained, a simple algorithm for generating random numbers is provided, and asymptotic results for the maximum likelihood estimators are established. An important feature of our construction is that no extra normalizing constant needs to be calculated, leading to more flexible distributions without increasing the complexity of the models. The benefit of employing these new sine-skewed toroidal distributions is shown on the basis of protein data, where, in general, the new models outperform their symmetric antecedents.
Disciplines :
Mathématiques
Auteur, co-auteur :
LEY, Christophe ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Ameijeiras-Alonso, Jose;  KU Leuven > Statistics Section, Department of Mathematics
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Sine-skewed toroidal distributions and their application in protein bioinformatics
Date de publication/diffusion :
02 octobre 2022
Titre du périodique :
Biostatistics
ISSN :
1465-4644
eISSN :
1468-4357
Maison d'édition :
Oxford University Press, Oxford, Royaume-Uni
Volume/Tome :
23
Fascicule/Saison :
3
Pagination :
685–704
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 20 juin 2022

Statistiques


Nombre de vues
93 (dont 3 Unilu)
Nombre de téléchargements
80 (dont 3 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
3
OpenCitations
 
7
citations OpenAlex
 
11
citations WoS
 
3

Bibliographie


Publications similaires



Contacter ORBilu