Reference : The Irreversible Pollution Game |
E-prints/Working papers : First made available on ORBilu | |||
Business & economic sciences : Economic systems & public economics | |||
http://hdl.handle.net/10993/50840 | |||
The Irreversible Pollution Game | |
English | |
Boucekkine, Raouf [] | |
Ruan, Weihua [] | |
Zou, Benteng ![]() | |
Jan-2022 | |
63 | |
No | |
[en] Differential game ; Asymmetric pollution cost ; Markov Perfect Equilibria ; Irreversible pollution ; Non-concave pollution decay | |
[en] We study a 2-country differential game with irreversible pollution. Irresability is of a hard type: above a certain threshold level of pollution, the self-cleaning capacity of Nature drops to zero. Accordingly, the game includes a non-concave feature, and we characterize both the cooperative and non-cooperative versions with this general non-LQ property. We deliver full analytical results for the existence of Markov Perfect Equilibria. We first demonstrate that when pollution costs are
equal across players (symmetry), irreversible pollution regimes are more frequently reached than under cooperation. Second, we study the implications of asymmetry in the pollution cost. We find far nontrivial results on the reachability of the irreversible regime. However, we unambiguously prove that, for the same total cost of pollution, provided the irreversible regime is reached in both the symmetric and asymmetric cases, long-term pollution is larger in the symmetric case, reflecting more intensive free-riding under symmetry. | |
http://hdl.handle.net/10993/50840 |
File(s) associated to this reference | ||||||||||||||
Fulltext file(s):
| ||||||||||||||
All documents in ORBilu are protected by a user license.