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A B S T R A C T

We investigate the extent to which the irreversibility of pollution shapes the free-riding
problems inherent in pollution (differential) games. To this end, we use two-country differential
pollution games. Irreversibility is of a hard type: While strictly positive and concave below a
certain threshold level of pollution, pollution decay drops to zero above this threshold. Assuming
that the pollution damage function and preferences are quadratic, we first examine both the
cooperative and non-cooperative versions of the game. We innovate in analytically demon-
strating the existence of Markov perfect equilibria (MPE) and characterizing these. Second, we
demonstrate that when players face the same pollution costs (symmetry), irreversible pollution
regimes are more frequently reached than under cooperation, and we evaluate the irreversibility
penalty stemming from the absence of cooperation. Incidentally, we prove that open-loop Nash
equilibria lead to reach more frequently the irreversible regime than the MPE under our setting.
Third, we study the implications of asymmetry in the pollution cost. We find that for equal total
pollution costs, asymmetric equilibria produce a lower emission rate than the symmetric under
some mild conditions, thereby driving the system to irreversibility less frequently than the latter.
Finally, we prove that provided the irreversible regime is reached in both the symmetric and
asymmetric cases, long-term pollution is greater in the symmetric case, reflecting more intensive
free-riding under symmetry.

. Introduction

Pollution control has been among the most discussed topics in several disciplines over the last five decades. A key conceptual
nd modeling aspect is the inherent externality problem: The emission of pollutants due to the actions of a given individual in
given place also affects other individuals in neighboring areas through various diffusion channels (wind and currents, among

thers), often giving rise to substantial free-riding problems. In this paper, we tackle an important issue at the core of the current
ebate: irreversible pollution. Several researchers claim that irreversible climate regimes have already occurred, and indeed, there
s now growing evidence that the buffering capacity of oceans (the most important carbon sink) is near saturation. Accordingly, it
s believed that the assimilation capacity of terrestrial ecosystems will peak by mid-century and then decline, with these becoming
net source of carbon by the end of the century. The potential collapse of the North Atlantic meridional overturning circulation is

lso drawing much attention, as it is projected to occur at a CO2 concentration of 450 ppm and we have already reached 390 ppm
Yohe et al., 2006; Boucekkine et al., 2013a; Lenton and Ciscarm, 2013). Other examples of irreversible pollution found in the
iterature include the so-called shallow lake problem (see a very recent exploration in Wagener and de Zeeuw (2021)). This is the
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typical working example for dynamic systems with tipping points (see also van der Ploeg and de Zeeuw (2018). In the lake system,
the tipping points are those at which a small increase in phosphorus loading shifts the lake to a poor state, with a significant loss
of ecosystem services. Irreversibility has also been studied in the context of the management of natural resources, as in Sakamoto
(2014).

This paper is a theoretical contribution to the literature on irreversible pollution, and in particular to the study of the determinants
f free-riding under the threat of irreversibility. Our core research questions are: To what extent does the irreversibility of pollution
hape the free-riding problems inherent in pollution (differential) games? Under what conditions is irreversible pollution reached
n the context of Nash competition? Could cooperation prevent this outcome? Do asymmetries between players (countries) trigger
ore or less free-riding, and hence, more or less irreversibility and/or long-term pollution with respect to the symmetric case? We

hall essentially differentiate between the players in terms of pollution cost.
We build on the seminal contribution of Tahvonen and Withagen (1996), TW hereafter, to build our game-theoretic framework.

n TW, there is a single player (say, a country) that faces a standard pollution control problem with the additional complication
hat pollution is irreversible: Pollution decay may decrease with the level of pollution and eventually drops to zero above a
ertain threshold. This non-concave feature leads to a sophisticated problem potentially yielding multiple steady-state equilibria
nd discontinuities, among other non-standard properties. Despite this additional difficulty, the model has been used in several
on-game-theoretic contexts (see, for example, Prieur (2009), Boucekkine et al. (2013a,b)). We study dynamic game extensions of
W and analytically characterize the associated Markov perfect equilibria (MPE) in a variety of settings.

From the seminal work of TW, we know that a central planner can only avoid the irreversible pollution regime under some
tringent parametric conditions. Accordingly, cooperation between the two players will not rule out the emergence of irreversible
egimes. Our dynamic game extension allows the visualization of the irreversibility penalty due to free-riding in non-cooperative
ames: We accurately characterize the extent to which free-riding will aggravate the global pollution problem by making an
rreversible pollution regime significantly easier to reach. In addition, we rigorously derive the implications of asymmetry in
ollution costs in terms of the frequency of reaching irreversibility and long-term pollution levels. Indeed, a key aspect already
dentified in the literature on pollution games and international environmental agreements is heterogeneity across players (see, for
xample, Hoel (1993), or Xepapadeas (1995)). We study this aspect in the presence of an irreversibility threshold.

In addition to the important methodological contribution, we are able to extract several significant results. We start with the
enchmark case of cooperation. As outlined above, the same model is analyzed in depth in TW. However, we employ a different
athematical approach: We use dynamic programming, which is the natural method to characterize MPE, whereas TW use multi-

tage optimal control. Thus, it is useful to check that the two methods lead to the same results concerning the reachability of the
rreversible pollution regime in the central planner (one-player) case. We indeed corroborate TW’s results and find that cooperation
etween players (implemented through the central planner counterpart of the game) does not always prevent the emergence of
rreversible pollution regimes. This is true in particular when pollution costs are low enough.

More importantly, considering that players face the same pollution cost (symmetry), we evaluate the scope for irreversibility in
his case, compared to cooperation, by identifying the range of parameters leading to crossing the irreversibility threshold in the
wo respective institutional settings. This in turn allows us to characterize the extent of free-riding under symmetry. Incidentally, we
lso demonstrate that, under our setting, open-loop Nash equilibria lead to reach more frequently the irreversible regime compared
o the MPE. Last but not least, we study the implications of asymmetry in the pollution cost for the reachability of the irreversibility
hreshold and for long-term pollution under this regime. We obtain two sets of non-trivial and original results: For equal total
ollution costs (summing unit pollution costs across countries), we first demonstrate that asymmetric equilibria produce a lower
mission rate than the symmetric under some mild conditions, thereby driving the system to irreversibility less frequently than the
atter. Second, we prove that provided the irreversible regime is reached in both the symmetric and asymmetric cases, long-term
ollution is greater in the symmetric case. This primarily reflects the more intensive free-riding under symmetry. To our knowledge,
his is the first paper pointing at this remarkable property in pollution games.

elation to the literature There exists an abundant economics literature on pollution games—game-theoretic models aiming to
haracterize equilibrium free-riding in multi-player models of (a common stock of) pollution. See, for example, Dockner and
an Long (1993), Dutta and Radner (2009) or Bertinelli et al. (2014) for recent examples. However, irreversible pollution has
een much more intensively studied in the ecological literature than in economics. Besides TW, only a limited number of economics
apers have been written about (hard) irreversibility as found in the ecology literature. Among these, Barrett (2013) is an intriguing
ontribution to the economics of environmental cooperation treaties under irreversibility thresholds and shows how uncertainty can
ignificantly shape the outcomes of cooperation, depending on whether uncertainty concerns the impact of irreversibility or the level
f the irreversibility threshold. Barrett’s frame is static, however. Indeed, differential game settings dealing with irreversible pollution
re much scarcer. Among the very few contributions to this line of research are Wagener and de Zeeuw (2021) and El Ouardighi
t al. (2020).1 El Ouardighi et al. (2020) explore differential games with variable self-cleaning capacity, but not in the sense of TW.
y allowing the self-cleaning capacity to be directly controlled so as to get rid of the non-concavity inherent in TW, they end up
xploring a different set of differential games with much softer irreversibility constraints. Here, we strictly follow TW in modeling
rreversibility with all the technical complications involved (and magnified under the differential game frame). In addition, and
ontrary to El Ouardighi et al. (2020), we do not consider only symmetric linear–quadratic games: While some linear-quadratic and

1 As mentioned above, Sakamoto (2014) also explores the implications of irreversibility but in another context, the dynamic management of natural resources.
2
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symmetry assumptions are made either for benchmarking or to ease the extraction of analytical results, we stick to the non-concave
and general specification of the pollution decay function postulated in TW, and also study departures from symmetry. Last but not
least, all our results are analytical—we only use numerical examples for illustration.

Wagener and de Zeeuw (2021) paper is definitely much closer to ours: It is anchored in the tipping games literature, of which
he so-called shallow lake problem is the typical working example. Indeed, in contrast to El Ouardighi et al. (2020), Wagener and
e Zeeuw (2021) deal precisely with the hard irreversibility constraint studied in TW. However, their methods – and therefore their
esults – are valid only for open-loop strategies and involve no time discount. Indeed, when applying their method to our model,
he result for the central planner case is the same as ours with no discount rate and a piecewise linear pollution decay function.
esides the generality of our decay function, we compute MPE (closed-loop strategies), which are admittedly more satisfactory
rom a rationality standpoint as they allow for feedback by construction, in contrast to open-loop strategies which build on strong
ommitment assumptions. Nonetheless, MPE are technically much more demanding technically speaking. This in no way diminishes
he merits of Wagener and de Zeeuw (2021), one of the very few in-depth papers on differential games with tipping points. We
ome back to this point in detail below when comparing the irreversible regime reachability conditions under open-loop strategies
ompared to the MPE. As for the role of the asymmetry of pollution costs in the reachability and long-term outcomes of irreversible
ollution regimes, to the best of our knowledge this remains unexplored in the literature so far.

We conclude this literature review with a few methodological remarks. First of all, because we rely on TW’s non-concave
ramework, the optimization work needed is far from non-trivial—not to mention the difficulty of computing MPE. More concretely,
he individual optimization program is an optimal regime-switching problem. As always, the tricky part of the optimization work
ies at the junction of the two regimes, that is, at the switching point (if any). Most of the existing literature on regime switching
ocuses on optimal individual (for example, central planner) problems, and thus, it has naturally relied on versions of the Pontryagin
ptimality conditions, including some specific continuity (or transversality) conditions on the maximized Hamiltonians and, in
ome cases, also on the co-state variables at the switching points (see, for example, Tomiyama (1985), Boucekkine et al. (2013a,b,
020)). The same technique has been used to characterize open-loop equilibria in dynamic game models with regime switching (see
oucekkine et al. (2011), for a two-country game without pollution irreversibility, in addition to Wagener and de Zeeuw (2021),
hich does deal with irreversibility). However, in this paper we aim to characterize the MPE (if any). This requires moving to
ynamic programming and designing a more adequate analytical approach.

Generally, it is very difficult to explicitly solve optimal control and multi-period differential game problems, even in a linear–
uadratic framework. Most of the results in the economics literature rely on numerical solution techniques (see Dawid and Gezer
2022), El Ouardighi et al. (2020), to mention just a few). The main reason is that the continuity conditions at the switching
oint between different periods (or modes) make it very difficult, if not impossible, to guess the functional form of the Bellman
alue function and, thus, the strategies. Even with linear–quadratic functions under autonomous settings, the commonly used
inear–quadratic functions fail to satisfy the transversality conditions. We show that despite the non-concavity resulting from the
rreversibility ingredient, we can analytically characterize the MPE of the different games considered (existence of the irreversible
egime and the asymptotics, and other related properties). This is true for any concave, strictly positive pollution decay function in
he reversible regime. That being said, we show in each game how the irreversible-regime-crossing conditions ‘‘degenerate’’ in the
inear decay case. Our numerical illustrations also consider this the linear decay function for simplicity and for comparison with
W.

The paper is organized as follows. Section 2 presents the basic differential game extension of TW. Section 3 briefly presents the
ooperative case, mostly to enable a close comparison with the one-country case studied in TW. Sections 4 and 5 are devoted to non-
ooperative games under symmetric versus asymmetric pollution costs. Section 5 provides a central result comparing the equilibrium
mission rates of both settings, with the subsequent implications for the crossing of the irreversibility threshold. Section 6 ranks
ollution outcomes across strategic settings (central planner, Nash symmetric, and Nash asymmetric) in the irreversible regime and
larifies some aspects of free-riding behavior in this regime. A comparison of the reachability conditions of the irreversible regime
etween strategic settings is also provided. Section 7 concludes.

. The game

We briefly present our game-theoretic extension of TW.
In contrast to TW, there are two players, referred to as player 𝑖 = 1, 2, both producing final consumption goods with pollution as

by-product. Ignoring differences in production, we can use their pollution emissions, 𝑦𝑖(𝑡), to measure their output level. Player
’s objective is to maximize her social welfare, taking into account transboundary pollution:

max
𝑦

𝑊𝑖 = ∫

+∞

0
(𝑈𝑖(𝑦𝑖) −𝐷𝑖(𝑧))𝑒−𝑟𝑡𝑑𝑡, (1)

where 𝑟 is the time preference, 𝑈𝑖(𝑦𝑖) is the utility from enjoying the final output generated with pollution 𝑦𝑖(𝑡), and 𝐷𝑖(𝑧) is the
damage function from the aggregate pollution stock 𝑧. The pollution stock 𝑧(𝑡) may decay at rate 𝛼(𝑧) if the pollution level is below

threshold 𝑧. In this regime, referred to as the reversible regime in TW, pollution accumulates as

�̇� = 𝑦1 + 𝑦2 − 𝛼(𝑧), 𝑧(0) = 𝑧0 given, (2)

where 𝛼(𝑧) is the pollution decay function in the reversible pollution regime. This captures Nature’s self-cleaning capacity. If the
hreshold is attained and crossed, the economy falls into the irreversible regime, where pollution decay drops to zero. Following
3
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TW, we assume that the decay function satisfies the following properties: 𝛼(0) = 0, 𝛼(𝑧) > 0 when 𝑧 ∈ [0, 𝑧), 𝛼(𝑧) = 0, ∀𝑧 ≥ 𝑧,
and 𝛼′′(𝑧) ≤ 0 when 𝑧 ∈ [0, 𝑧). Though TW do not assume that 𝛼(𝑧) is decreasing in the reversible regime, they do work with the
affine specification 𝛼(𝑧) = 𝛼 − 𝛽𝑧, with 𝛼 and 𝛽 being positive in their numerical examples (though, of course, the specification is
only valid locally due to the positivity constraint). We go in the same direction, we only use the affine specification for numerical
exercises or to obtain some explicit results.

Due to the differential game framework, we need to posit quadratic utility and damage functions in order to get analytical
results—for the existence of MPE, in particular. More specifically, we suppose 𝑈𝑖(𝑦𝑖) = 𝑎𝑖𝑦𝑖−𝑦2𝑖 and 𝐷𝑖(𝑧) = 𝑐𝑖𝑧2, with all coefficients,
𝑎𝑖, 𝑐𝑖, being positive constants. Accordingly, player 𝑖’s optimal control problems under the reversible and irreversible regimes – called
Period I and II hereafter – read as follows:

Period I

max
𝑦𝑖

𝑊 𝐼
𝑖 = ∫

𝑇

0
(𝑈𝑖(𝑦𝑖) −𝐷𝑖(𝑧))𝑒−𝑟𝑡𝑑𝑡 = ∫

𝑇

0
(𝑎𝑖𝑦𝑖 − 𝑦2𝑖 − 𝑐𝑖𝑧

2)𝑒−𝑟𝑡𝑑𝑡,

ubject to

�̇� = 𝑦1 + 𝑦2 − 𝛼(𝑧), 𝑧(0) = 𝑧0,

and
{

𝑧(𝑇 ) = 𝑧, if 𝑇 < +∞,
lim
𝑡→∞

𝑧(𝑡) ≤ 𝑧, if 𝑇 = +∞.

eriod II

max
𝑦𝑖

𝑊 𝐼𝐼
𝑖 = ∫

+∞

𝑇
(𝑈𝑖(𝑦𝑖) −𝐷𝑖(𝑧))𝑒−𝑟𝑡𝑑𝑡 = ∫

+∞

𝑇
(𝑎𝑖𝑦𝑖 − 𝑦2𝑖 − 𝑐𝑖𝑧

2)𝑒−𝑟𝑡𝑑𝑡,

ubject to

�̇� = 𝑦1 + 𝑦2, 𝑧(𝑇 ) = 𝑧.

rom now on, we define 𝑐 by 𝑐1 + 𝑐2 = 2𝑐 > 0, the case 𝑐 = 𝑐1 = 𝑐2 covering the case of pollution cost symmetry. We start with
the benchmark cooperative game before exploring the equilibrium properties of Nash games. We shall use dynamic programming
along the paper.2

3. Cooperative equilibria: the central planner problem

We start with the cooperative game where a benevolent central planner (for example, a credible international institution or a
state’s federal government) enforces cooperation between the two players. We do this to compare our results with TW’s. In both
cases, there is a unique optimizing authority, potentially leading to similar outcomes. We indeed refine a few of the results obtained
by TW in some way.

We assume that the central planner maximizes the sum of the utilities of the two players, namely,

max
𝑦1 ,𝑦2

𝑊 𝐼
𝑐 = ∫

𝑇

0

∑

𝑖=1,2
(𝑈𝑖(𝑦𝑖) −𝐷𝑖(𝑧))𝑒−𝑟𝑡𝑑𝑡 = ∫

𝑇

0

∑

𝑖=1,2
(𝑎𝑖𝑦𝑖 − 𝑦2𝑖 − 𝑐𝑖𝑧

2)𝑒−𝑟𝑡𝑑𝑡,

subject to

�̇� = 𝑦1 + 𝑦2 − 𝛼(𝑧), 𝑧(0) = 𝑧0,

and
{

𝑧(𝑇 ) = 𝑧, if 𝑇 < +∞,
lim
𝑡→∞

𝑧(𝑡) ≤ 𝑧, if 𝑇 = +∞.

urthermore, if 𝑇 < ∞, the system enters the situation with no decay:

max
𝑦1 ,𝑦2

𝑊 𝐼𝐼
𝑐 = ∫

∞

𝑇

∑

𝑖=1,2
(𝑈𝑖(𝑦𝑖) −𝐷𝑖(𝑧))𝑒−𝑟𝑡𝑑𝑡 = ∫

∞

𝑇

∑

𝑖=1,2
(𝑎𝑖𝑦𝑖 − 𝑦2𝑖 − 𝑐𝑖𝑧

2)𝑒−𝑟𝑡𝑑𝑡,

ubject to

�̇� = 𝑦1 + 𝑦2, 𝑧(𝑇 ) = 𝑧.

he central planner’s stationary Bellman value function 𝑉 (𝑧) is given by the following HJB equation:

𝑟𝑉𝑐 (𝑧) = max
𝑦1 ,𝑦2≥0

{

𝑎1𝑦1 + 𝑎2𝑦2 − 𝑦21 − 𝑦22 − 2𝑐𝑧2 + 𝑉 ′
𝑐 (𝑧)

[

𝑦1 + 𝑦2 − 𝛿 (𝑧)
]}

, (3)

here 𝑉 ′
𝑐 (𝑧) is the marginal value function and

2 Of course, the central planner problem can be solved either by dynamic programming or by Pontryagin’s principle. Since we essentially characterize feedback
4

ontrols in the differential games, which requires dynamic programming, we choose the same approach in Section 3 to ease exposition.
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𝛿(𝑧) =
{

𝛼(𝑧), 𝑧 ≤ 𝑧,
0, 𝑧 > 𝑧.

n Period II, when 𝑧 > 𝑧, set 𝛿 (𝑧) = 0. Then for the infinite time horizon autonomous optimal control, we can assume that 𝑉𝑐 (𝑧) is
quadratic function of 𝑧 in the form

𝑉𝑐 (𝑧) = 𝐴𝑐 + 𝐵𝑐𝑧 +
𝐶𝑐
2
𝑧2,

where 𝐴𝑐 , 𝐵𝑐 , and 𝐶𝑐 are unknown coefficients. Substituting the affine-quadratic value function into the HJB equation and comparing
he coefficients, we can obtain the explicit values of coefficients 𝐴𝑐 , 𝐵𝑐 , and 𝐶𝑐 . Furthermore, at 𝑧 = �̄�,

𝑉𝑐 (�̄�) = 𝐴𝑐 + 𝐵𝑐 �̄� +
𝐶𝑐
2
�̄�2, (4)

which is the initial condition for Period II and the terminal condition for Period I. In Period I, when 𝑧 < �̄� HJB equation (3) takes
the form

𝑟𝑉𝑐 =
1
4

[

(

𝑎1 + 𝑉 ′
𝑐
)2 +

(

𝑎2 + 𝑉 ′
𝑐
)2
]

− 2𝑐𝑧2 − 𝑉 ′
𝑐 𝛿 (𝑧) . (5)

It is worth pointing out that in this period, though the optimization system is still autonomous with free ending time and the
state equation and objective functions are still affine or quadratic, the linear–quadratic guess of the value function no longer works
(contrary to the solution of Period II) due to the transversality condition (4). This problem arises either in the central planner or
the differential games models we will explore. Thus, a different method is needed to tackle this kind of affine-quadratic optimal
control problems. We do provide it in this paper.

Based on the above HJB equations, the online Appendix A.1 indeed demonstrates the following proposition.

Proposition 1. Let 𝑉𝑐 (𝑧), 𝑉 ′
𝑐 (𝑧) be, respectively, the Bellman value and marginal value functions of the central planner. Then, under the

central player’s optimal choice 𝑦𝑖 =
𝑎𝑖+𝑉 ′

𝑐 (𝑧)
2 for 𝑖 = 1, 2, the following properties are true:

1.1) If inequality
(

𝑟 + 𝛿′ (�̄�)
)

(𝑎 − 𝛿 (�̄�)) − 4𝑐�̄� > 0 (6)

holds, then threshold �̄� is reached in finite time from some 𝑧0 < �̄�.
1.2) After crossing the threshold �̄�, the dynamic system converges asymptotically to its long-run steady state:

lim
𝑡→∞

𝑧 (𝑡) = 𝑧∗𝑐 = −
𝑎 + 𝐵𝑐
𝐶𝑐

= 𝑎𝑟
4𝑐

(> �̄�), (7)

where

𝑎 =
𝑎1 + 𝑎2

2
, 𝐶𝑐 =

1
2

[

𝑟 −
√

𝑟2 + 16𝑐
]

, 𝐵𝑐 =
𝑎𝐶𝑐

𝑟 − 𝐶𝑐
. (8)

1.3) If in addition to (6), the special linear decay function 𝛿 (𝑧) = 𝛼 − 𝛽𝑧 with positive 𝛼 and 𝛽 and

4𝑐𝑧0 < (𝑟 − 𝛽)
(

𝑎 − 𝛿
(

𝑧0
))

(9)

holds (in particular, if 𝑎 ≥ 𝛼), then �̄� is reached in finite time for any 0 ≤ 𝑧0 ≤ �̄�.
1.4) If the reversed inequality in (6) holds, then �̄� is never reached.

As will be made clearer below, the economic interpretation of the results is perfectly in line with the general analysis provided
y TW. In particular, after rewriting condition (6) as

4𝑐�̄� <
(

𝑟 + 𝛿′ (�̄�)
)

(𝑎 − 𝛿 (�̄�)) ,

ne can observe that the larger the pollution cost as captured by parameter 𝑐, the less likely condition (6) is to hold and the more
ikely a permanent reversible regime will set in. The reverse occurs with the utility parameter 𝑎. That is to say, condition (6) simply
ompares the cost of pollution and its welfare benefit.

Last but not least, it should be noted that if �̄� is reached in finite time, �̄� , depending on whether �̄� < 𝑧∗𝑐 or �̄� ≥ 𝑧∗𝑐 , the state
ariable exhibits a different behavior for 𝑡 > �̄� . In the first case, the state enters the irreversible regime and 𝑧 (𝑡) → 𝑧∗𝑐 as 𝑡 → ∞. In
he second case, 𝑧 (𝑡) = �̄� for all 𝑡 > �̄� . Therefore, the process stops at �̄� .

xample 1. Clearly, our cooperative setting need not be different from TW’s optimal control model. However, our more specific
inear–quadratic (LQ) assumptions regarding the utility and damage functions do allow us to get more clear-cut results. While several
ey results in TW are formulated as sufficient conditions, we can provide a full and global picture of optimal trajectories, as depicted
n Proposition 1 above. Here, we complement our theoretical analysis with a numerical example. In TW, a numerical example is
iven for the case of one player with

𝑈 (𝑦) = 𝑎𝑦 − 𝑏𝑦2, 𝐷 (𝑧) = 𝑐𝑧2, 𝛿 (𝑧) = 𝛼 − 𝛽𝑧

nd
5
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�̇� = 𝑦 − 𝛿 (𝑧) for 𝑧 < �̄�

sing the parameter values

𝑎 = 18, 𝑏 = 0.5, 𝑐 = 0.004, 𝑟 = 0.2, 𝛼 = 20, 𝛽 = 0.1.

Their model is equivalent to our central planner model with 𝑎1 = 𝑎2 = 𝑎, 𝑐1 = 𝑐2 = 𝑐∕2, and 𝑦1 = 𝑦2 = 𝑦∕2. We use the values of
parameters. The equivalent value of 𝑐 in our case is 0.004∕2 = 0.002. In TW, �̄� = 𝛼∕𝛽 = 200. At this value,

(

𝑟 + 𝛿′ (�̄�)
)

(𝑎 − 𝛿 (�̄�)) = (𝑟 − 𝛽) 𝑎 = 1.8 > 1.6 = 4𝑐�̄�.

Hence, (6) holds, and therefore, �̄� = 200 is reached in finite time. In fact, for any

𝑐1 = 𝑐2 ≥
𝑎 (𝑟 − 𝛽)

4�̄�
= 0.00225,

the reversed inequality in (6) is satisfied for �̄� = 200. Therefore, by Proposition 1 �̄� is not reachable.
Returning to the case where 𝑐1 = 𝑐2 = 0.002, (6) is satisfied if

�̄� >
(𝑟 − 𝛽) (𝛼 − 𝑎)
𝛽 (𝑟 − 𝛽) − 4𝑐

= 100.

Such values of �̄� are all reachable.3

4. Non-cooperative equilibria with symmetric pollution costs

We now move to non-cooperative (Nash) games. We first study the case where pollution costs are evenly distributed across
players; asymmetric extensions are considered in Section 5. From here onward, we focus on the characterization of Markov perfect
equilibria. For simplicity, let 𝑎 = 𝑎1+𝑎2

2 .

4.1. Characterization of the irreversible regime (𝑧 > 𝑧)

Denote the Bellman value function of player 𝑖 as 𝑉𝑖(𝑧), ∀𝑧. Then 𝑉𝑖 must satisfy the following Hamilton–Jacobin–Bellman (HJB)
equation:

𝑟𝑉𝑖(𝑧) = max
𝑦𝑖

[

𝑎𝑖𝑦𝑖 − 𝑦2𝑖 − 𝑐𝑖𝑧
2 + 𝑉 ′

𝑖
[

𝑦1 + 𝑦2
]]

. (10)

The right-hand side’s first-order condition (which also satisfies the second-order condition) yields that the optimal choice of player
𝑖 is

𝑦𝑖 =
𝑎𝑖 + 𝑉 ′

𝑖
2

, 𝑖 = 1, 2. (11)

Thus, the HJB equation (10) becomes

𝑟𝑉𝑖(𝑧) = 𝑎𝑖
𝑎𝑖 + 𝑉 ′

𝑖
2

−

(

𝑎𝑖 + 𝑉 ′
𝑖

2

)2

− 𝑐𝑖𝑧
2 + 𝑉 ′

𝑖

[

𝑎1 + 𝑉 ′
1

2
+

𝑎2 + 𝑉 ′
2

2

]

, 𝑖 = 1, 2. (12)

Based on HJB equation (10), in the online Appendix A.2 we obtain that the optimal strategy of player 𝑖 = 1, 2 is

𝑦𝑚𝑖 (𝑧) =
𝑎𝑖 + 𝐵𝑚 + 𝐶𝑚𝑧

2
,

nd the state equation

�̇� = 𝑦𝑚1 + 𝑦𝑚2 = 𝑎 + 𝐵𝑚 + 𝐶𝑚𝑧, 𝑡 ≥ 𝑇

yields the explicit solution

𝑧𝑚(𝑡) = (𝑧 − 𝑧∗𝑠 )𝑒
𝐶𝑚(𝑡−𝑇 ) + 𝑧∗𝑠 , (13)

where 𝑧∗𝑠 is the asymptotically stable long-run steady state and is given by

𝑧∗𝑠 = −𝑎 + 𝐵𝑚

𝐶𝑚 = 𝑎
12𝑐

(

5𝑟 +
√

𝑟2 + 12𝑐
)

. (14)

It is straightforward that when 𝑧 = 𝑧,

𝑉𝑖(𝑧) = 𝐴𝑚
𝑖 + 𝐵𝑚𝑧 + 𝐶𝑚

2
𝑧2 ≡ 𝑉 𝑖, (15)

which will serve as a terminal condition for the first period under Markovian competition. In other words, this is the transversality
condition between Periods I and II. The parameters are given by

3 Similarly, we can easily show that the model in Wagener and de Zeeuw (2021), when adapted to our cooperative setting, leads to a special case of
6

roposition 1.
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𝐶𝑚 = 𝑟 −
√

𝑟2 + 12𝑐
3

(< 0) (16)

and

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐵𝑚
𝑖 = 𝐵𝑚

2 ≡ 𝐵𝑚 = 2𝑎𝐶𝑚

2𝑟−3𝐶𝑚 (< 0),

𝐴𝑚
1 = (𝑎1+𝐵𝑚)2+2𝐵𝑚(𝑎2+𝐵𝑚)

4𝑟 ,

𝐴𝑚
2 = (𝑎2+𝐵𝑚)2+2𝐵𝑚(𝑎1+𝐵𝑚)

4𝑟 .

(17)

.2. Characterization of the reversible regime and threshold-crossing conditions (𝑧 < 𝑧)

In Period I, before the pollution threshold is triggered, the accumulation of pollution satisfies

�̇� = 𝑦1 + 𝑦2 − 𝛿(𝑧) = 𝑦1 + 𝑦2 − 𝛿(𝑧), 𝑡 ≤ 𝑇 ,

with initial condition 𝑧(0) = 𝑧0 given. Similarly to Section 3, the value function must satisfy the following HJB equation:

𝑟𝑉𝑖(𝑧) = max
𝑦𝑖

[

𝑎𝑖𝑦𝑖 − 𝑦2𝑖 − 𝑐𝑖𝑧
2 + 𝑉 ′

𝑖 (𝑦1 + 𝑦2 − 𝛿(𝑧))
]

. (18)

The right-hand side’s first-order condition yields that player 𝑖’s optimal choice is given by (11). Substituting into (18), one gets

𝑟𝑉𝑖(𝑧) = 𝑎𝑖
𝑎𝑖 + 𝑉 ′

𝑖
2

−

(

𝑎𝑖 + 𝑉 ′
𝑖

2

)2

− 𝑐𝑖𝑧
2 + 𝑉 ′

𝑖

[

𝑎1 + 𝑉 ′
1

2
+

𝑎2 + 𝑉 ′
2

2
− 𝛿(𝑧)

]

, 𝑖 = 1, 2. (19)

or simplicity, denote 𝑃𝑖(𝑧) = 𝑉 ′
𝑖 (𝑧) for 𝑖 = 1, 2. Taking the derivative of (19) on both sides with respect to state variable 𝑧, one gets

𝑟𝑃𝑖 =
1
2

{

𝑃 ′
𝑖
[

2𝑎 + 𝑃1 + 𝑃2 − 2𝛿 (𝑧)
]

+ 𝑃𝑖

[

𝑃 ′
𝑗 − 2𝛿′(𝑧)

]}

− 2𝑐𝑖𝑧. (20)

We can now prove the existence of Markovian Nash equilibria in the first period.

Proposition 2 (Existence Of Stationary Markovian Perfect Nash Equilibria). Suppose that 𝑐1 = 𝑐2 = 𝑐 and that the following equation is
solvable in terms of 𝑃𝑠 (�̄�):

3𝑃𝑠 (�̄�)2 + 4 (𝑎 − 𝛿 (�̄�))𝑃𝑠 (�̄�) + 𝑎2𝑖 = 4
(

𝑟𝑉𝑖 + 𝑐�̄�2
)

. (21)

Let 𝑃𝑠 (�̄�) be the root of quadratic equation (21) pertaining to the most concave value function 𝑉𝑠 (𝑧). Then, there exist stationary Markovian
perfect Nash equilibria, which are given by solutions to the following equation:

[ 3
2
𝑃𝑠(𝑧) + 𝑎 − 𝛿 (𝑧)

]

𝑃 ′
𝑠 (𝑧) = (𝑟 + 𝛿′ (𝑧))𝑃𝑠(𝑧) + 2𝑐𝑧,

with terminal condition 𝑃𝑠 (�̄�).
Furthermore, for the special linear decay function 𝛿(𝑧) = 𝛼 − 𝛽𝑧 and 𝛼, 𝛽 as positive constants, the stationary Markovian perfect Nash

equilibrium can be more precisely presented as

𝑦𝑖 (𝑧) =
𝑎𝑖
2

+ 1
3
[

𝑄𝑠 (𝑧) − 𝑎 + 𝛿 (𝑧)
]

for 𝑧 < �̄� 𝑖 = 1, 2,

where 𝑄𝑠 (𝑧) satisfies the following equation:

|

|

|

|

|

𝑄𝑠 (𝑧) − 𝑢−𝑠
(

𝑧 + 𝑎𝑠∕𝑏𝑠
)

𝑄𝑠 (�̄�) − 𝑢−𝑠
(

�̄� + 𝑎𝑠∕𝑏𝑠
)

|

|

|

|

|

𝑝𝑠
|

|

|

|

|

𝑄𝑠 (𝑧) − 𝑢+𝑠
(

𝑧 + 𝑎𝑠∕𝑏𝑠
)

𝑄𝑠 (�̄�) − 𝑢+𝑠
(

�̄� + 𝑎𝑠∕𝑏𝑠
)

|

|

|

|

|

1−𝑝𝑠

= 1,

in which

𝑢−𝑠 = 1
2

[

𝑟 −
√

𝑟2 + 4𝑏𝑠

]

, 𝑢+𝑠 = 1
2

[

𝑟 +
√

𝑟2 + 4𝑏𝑠

]

and

𝑎𝑠 = (𝛽 − 𝑟)(𝑎 − 𝛼), 𝑏𝑠 = 𝛽(𝛽 − 𝑟) + 3𝑐.

This result does not depend on the explicit form of decay function 𝛿(𝑧) (see the online Appendix A.2 for a more detailed
explanation). We now study the key issue of the reachability of the irreversible regime. We generalize to the game context the
intuitive property that such an outcome depends on the position of the steady state of the pollution dynamics induced by the
Markovian equilibrium and the irreversibility threshold, �̄�. To this end, we start by substituting the above Markovian optimal
strategies into the dynamic equation for 𝑧 < 𝑧. This yields

�̇� = 𝑓𝑠 (𝑧) ≡ 𝑃𝑠 (𝑧) + 𝑎 − 𝛿 (𝑧) = 1
3
[

2𝑄𝑠 (𝑧) + 𝑎 − 𝛿 (𝑧) ,
]

(22)
7

with initial condition 𝑧 (0) = 𝑧0 given.
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Furthermore, pollution accumulation increases or decreases over time depending on the sign of 𝑄𝑠 (𝑧): If 𝑄𝑠
(

𝑧0
)

> 0, then
ollution accumulates until the time when 𝑃𝑠 + 𝑎 − 𝛿 = 0. Let 𝑧′𝑠 denote this root. At this point,

𝑄𝑠
(

𝑧′𝑠
)

= 1
2
(

𝛿
(

𝑧′𝑠
)

− 𝑎
)

.

Hence, by Proposition 2, 𝑧′𝑠 satisfies

𝑆
(

𝑧′𝑠,
1
2
(

𝛿
(

𝑧′𝑠
)

− 𝑎
)

)

= 𝑆
(

�̄�, 𝑄𝑠 (�̄�)
)

. (23)

We conclude the above analysis in the following proposition:

Proposition 3. Suppose 𝑐1 = 𝑐2 = 𝑐 and that Eq. (21) has a negative real root. Let 𝑧′𝑠 satisfy (23). Then, under the Markovian perfect
Nash equilibrium given by Proposition 2,

(a) if �̄� < 𝑧′𝑠 the pollution decay threshold will be triggered in finite time �̄�𝑠, which is given by

�̄�𝑠 = ∫

�̄�

𝑧0

𝑑𝑧
𝑃𝑠 (𝑧) + 𝑎 − 𝛿 (𝑧)

; (24)

(b) otherwise, if �̄� ≥ 𝑧′𝑠 the pollution decay threshold will never be reached.

Proposition 3 provides the counterpart to Proposition 1 (cooperative case) for the game-theoretic context under Markovian
strategies in the general non-concave decay case. As in Proposition 1, the intuition is clear but obtaining the characterization is
highly non-trivial. We go a step further below and express the results in terms of the deep economic parameters of the model.

4.3. Reachability of the threshold and asymptotes

We now uncover the concrete parametric implications of the proposition above to better visualize the economic and ecological
determinants of reaching the irreversible regime. We also explore the resulting asymptotes. Particular attention is paid to the
comparison of the reachability of the irreversible regime between the cooperative and non-cooperative settings, with concrete
numerical examples to support the theoretical arguments. We start with some general reachability conditions.

Proposition 4. The following are true.

1. If 𝑎 ≤ 𝛿 (�̄�) and
(

𝑟 + 𝛿′ (�̄�)
)

(𝑎 − 𝛿 (�̄�)) ≤ 3𝑐�̄�, (25)

then �̄� is never reached. Furthermore,

lim
𝑡→∞

𝑧 (𝑡) = 𝑧′𝑠, (26)

where 𝑧′𝑠 is given in Proposition 3.
2. If 𝑎 > 𝛿 (�̄�), �̄� is never reached if and only if

𝑐�̄�2 ≥
𝑎2𝑖 − (𝑎 − 𝛿 (�̄�))2

4
− 𝑟𝑉𝑖 (�̄�) . (27)

Case 2 is economically more relevant as the decay is typically very low when we reach the irreversibility threshold (being equal
o zero in TW). The intuition behind condition (27) is straightforward. The left-hand side is the direct cost of pollution accumulation,
efined in the objective function, at the threshold 𝑧. The right-hand side is the counterpart gain at the threshold and is twofold:

The first part is the short-run net gain from emissions net of decay effects while the second part measures the long-run impact on
the optimal value function when the threshold is crossed and the ecological system enters the second phase. The above condition
provides the rather straightforward information that when the accumulated cost at the threshold is sufficiently high and dominates
the gain, more effort will be made by both players to not reach the threshold. Otherwise, when the cost is not high enough, the
threshold will be crossed in finite time.

In Proposition 1 for the cooperative case, a permanent reversible regime sets in if and only if

4𝑐�̄� ≥
(

𝑟 + 𝛿′ (�̄�)
)

(𝑎 − 𝛿 (�̄�)) .

Here, all the results are derived under condition (25), which is similar to the benchmark condition above. However, the Nash game
displays different outcomes even if we restrict ourselves to the TW case discussed in item 2 of Proposition 4 (with 𝛿(�̄�) = 0). A second
condition is required, namely (27): provided condition (25) holds, we get the permanent reversible case if and only if the addition
condition (27) holds. This extra condition is due to the game setting, it does not emerge in the original TW central planner problem.
We shall come back to this point in Section 6.1 when we collate all information regarding the equilibrium outcomes obtained in
the different game frames considered along this paper. In the meantime, we study below the implications of this intricate additional
condition in the linear decay case and prove some additional properties.
8
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Asymptotic behavior. If �̄� is reached in finite time, �̄� , depending on whether �̄� < 𝑧∗𝑠 or �̄� ≥ 𝑧∗𝑠 , the state exhibits different behavior
for 𝑡 > �̄� . In the first case, the state enters Period II and 𝑧 (𝑡) → 𝑧∗𝑠 as 𝑡 → ∞. In the second case, 𝑧 (𝑡) = �̄� for all 𝑡 > �̄� .

The following proposition complements Proposition 4, with a particularly clear-cut result in the case of (locally) linear decay
unctions.

roposition 5 (Reachability of �̄�). Suppose
(

𝑟 + 𝛿′ (�̄�)
)

(𝑎 − 𝛿 (�̄�)) > 3𝑐�̄�. (28)

Then �̄� is reached in finite time for some 𝑧0 if either 𝑎 > 𝛿 (�̄�) or 𝑎 ≤ 𝛿 (�̄�) and

𝑐�̄�2 ≥
𝑎2𝑖 − (𝑎 − 𝛿 (�̄�))2

4
− 𝑟𝑉𝑖 (�̄�) (29)

holds. If, in addition, 𝛿 = 𝛼 − 𝛽𝑧 with positive 𝛼 and 𝛽 and 𝑎 ≥ 𝛼, then �̄� is reached in finite time for any 0 ≤ 𝑧0 ≤ �̄�.

In the case where 𝑎 > 𝛿 (�̄�), the two propositions above lead to the following simple necessary and sufficient condition (the
etailed proof is given in the online Appendix A.5).

orollary 1. Suppose 𝑎 > 𝛿 (�̄�). For any fixed 𝑐 > 0, we let �̄� be the largest solution 𝑧 to the following equation:

4𝑐𝑧2 = 𝑎2𝑖 − 4𝑟𝑉𝑖 (𝑧; 𝑐) − (𝑎 − 𝛿 (𝑧))2 . (30)

hen �̄� is reached in finite time from some 𝑧0 if and only if �̄� < �̄�.
Equivalently, for any fixed �̄� > 0 we let �̄� be the largest solution 𝑐 to the equation

4𝑐�̄�2 = 𝑎2𝑖 − 4𝑟𝑉𝑖 (�̄�; 𝑐) − (𝑎 − 𝛿 (�̄�))2 . (31)

hen �̄� is reached in finite time for some 𝑧0 if and only if 𝑐 < �̄�. Furthermore,

�̄� > 𝑎𝑟
2�̄�

. (32)

The case where 𝑎 > 𝛿 (�̄�) is quite interesting to get a sense of the implications of the more or less involved conditions displayed
in Propositions 4 and 5. In this case, the irreversibility threshold is crossed if

𝑐 < 1
4�̄�

(

𝑟 + 𝛿′ (�̄�)
)

(𝑎 − 𝛿 (�̄�))

in the cooperative game, while the Nash counterpart requires 𝑐 < �̄�. Since

�̄� > 1
4�̄�

(

𝑟 + 𝛿′ (�̄�)
)

(𝑎 − 𝛿 (�̄�))

by (32), the condition for the emergence of the irreversible regime is easier to check in the Nash case. This sounds intuitive:
Cooperation generally allows reaching lower pollution levels in pollution games (see the survey by Van Long (2010), and there
is no particular reason why the picture should change for irreversibility thresholds. Absence of cooperation will more frequently
lead to regimes with more pollution (in this case, irreversibility). Our analytical exploration allows to assess rigorously to which
extent free-riding aggravates the irreversibility problem and to closely relate the latter to the deep parameters of the model. We
provide here below a further assessment based on open-loop strategies as compared with the MPE studied so far.

4.4. Comparison with open-loop strategies

Open-loop (OL) strategies are an alternative class of Nash strategies, which has been often studied in pollution games. OL players
do not observe the state variables or they decide to commit to a given time function, therefore not involving any kind of feedback
control from the players. Though MPE may suggest that by construction they leave more room for free-riding, comparison between
MPE and OL strategies in terms of social welfare and other aggregate and individual indicators is often tricky, often delivering
ambiguous outcomes, see for example Bertinelli et al. (2014, 2018).4 As outlined in the Introduction, Wagener and de Zeeuw (2021)
s the unique paper, to the best of our knowledge, which derives OL strategies under irreversibility thresholds. Rather than replicating
heir analysis on our model, we focus here on a key economic question: Do OL strategies lead to cross the irreversibility threshold
ore and less often than the MPE? We can respond to this question with a minimal amount of algebra. Consider our model presented

n Section 2, more precisely the model in Period I, in the reversible regime. To solve for OL strategies, we depart by construction
rom dynamic programming and use the Pontryagin principle. The current value Hamiltonian for player 𝑖 is5

�̃�𝑖 =
(

𝑎𝑖𝑦𝑖 − 𝑦2𝑖 − 𝑐𝑖𝑧
2) + 𝜆𝑖

(

𝑦1 + 𝑦2 − 𝛿 (𝑧)
)

, 𝑖 = 1, 2.

where 𝜆𝑖 is the associated co-state variable. Using the Pontryagin maximum principle, the optimal control 𝑦∗𝑖 satisfies 𝜕𝐻𝑖
𝜕𝑦𝑖

= 0, thus
yielding

4 For more formal definitions, examples and comparisons on MPE and OL strategies, see Dockner et al. (2000), Chapters 3 and 4.
5 There is no discounting, 𝑟 = 0, in Wagener and de Zeeuw (2021).
9
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𝑦∗𝑖 =
𝑎𝑖 + 𝜆𝑖

2
for 𝑖 = 1, 2.

As a result,

𝐸∗ = 𝑦∗1 + 𝑦∗2 = 𝑎 +
𝜆1 + 𝜆2

2
.

Also using the Pontryagin condition 𝜕𝐻𝑖∕𝜕𝑧 = −�̇�𝑖 + 𝑟𝜆𝑖 at the steady state of the reversible regime (so with �̇�𝑖 = 0), it follows that

−2𝑐𝑖𝑧∗ − 𝜆𝑖𝛿
′ (𝑧∗

)

= 𝑟𝜆𝑖.

Therefore,

4𝑐𝑧∗ + 2
(

𝐸∗ − 𝑎
) (

𝛿′
(

𝑧∗
)

+ 𝑟
)

= 0.

Combined with the steady state relation, �̇� = 0, that is

𝐸∗ = 𝛿
(

𝑧∗
)

,

it follows that

2𝑐𝑧∗ =
(

𝛿′
(

𝑧∗
)

+ 𝑟
) (

𝑎 − 𝛿
(

𝑧∗
))

.

Hence, �̄� being reachable if and only if �̄� > 𝑧∗, one gets the following reachability condition

2𝑐�̄� <
(

𝛿′ (�̄�) + 𝑟
)

(𝑎 − 𝛿 (�̄�)) .

his condition should be compared with the counterpart under MPE, condition (28):

3𝑐�̄� <
(

𝑟 + 𝛿′ (�̄�)
)

(𝑎 − 𝛿 (�̄�))

t follows that MPE strategies require significantly lower pollution costs to lead to crossing the irreversibility threshold. Said
ifferently, OL strategies require much higher pollution costs to avoid irreversibility. When irreversibility comes to the story, the
lexibility of the MPE (based on a larger information set) clearly outperforms the OL strategies in terms of escaping irreversibility.

. Non-cooperative games with asymmetric pollution costs

We now come to one of the most important contributions of this paper: the role of asymmetries. We relax the assumption of
dentical pollution costs and study the implications in terms of the frequency of emergence of the irreversible regime compared to
he (symmetric) benchmark case. Using the methodology applied successfully above to this general case, we have not been able
o uncover economically interpretable conditions for the emergence of the irreversible pollution regime, the obtained conditions
eing largely implicit. Only extreme asymmetric cases can allow for the derivation of explicit results (see the online Appendix A.8
or detailed computations in this special case, we shall use this case for illustrative purposes in Section 6). We therefore apply a
ifferent approach to infer the role of asymmetry. We explore a shortcut through the analysis of the equilibrium state equations

�̇� = 𝑓 (𝑧),

sing a prior investigation of the optimal responses of the players as in Section 4.2 (with 𝑓 (.) ≡ 𝑓𝑠(.) where 𝑓𝑠(.) is given by Eq. (22)).
More specifically, we study the behavior of equilibrium emission rates (as captured by 𝑓 (𝑧)) in the neighborhood of the threshold
�̄�. To this end, some analysis of equilibrium outcomes in the general case is needed.

haracterization of the irreversible regime (𝑧 > �̄�) For 𝑧 > �̄�, 𝛿 (𝑧) = 0. We seek the value functions in the quadratic form

𝑉𝑖 (𝑧) = 𝐴𝑖 + 𝐵𝑖𝑧 +
𝐶𝑖
2
𝑧2, 𝑖 = 1, 2. (33)

Substituting the quadratic functions into (12), it follows that

𝑟
[

𝐴𝑖 + 𝐵𝑖𝑧 +
𝐶𝑖
2
𝑧2
]

= 1
4
(

𝑎𝑖 + 𝐵𝑖 + 𝐶𝑖𝑧
)2 + 1

2
(

𝐵𝑖 + 𝐶𝑖𝑧
) (

𝑎𝑗 + 𝐵𝑗 + 𝐶𝑗𝑧
)

− 𝑐𝑖𝑧
2.

Comparing coefficients, we find that

4𝑟𝐴𝑖 =
(

𝑎𝑖 + 𝐵𝑖
)2 + 2𝐵𝑖

(

𝑎𝑗 + 𝐵𝑗
)

,
2𝑟𝐵𝑖 = 𝐶𝑖

(

𝑎𝑖 + 𝐵𝑖
)

+ 𝐵𝑖𝐶𝑗 + 𝐶𝑖
(

𝑎𝑗 + 𝐵𝑗
)

,
2𝑟𝐶𝑖 = 𝐶2

𝑖 + 2𝐶𝑖𝐶𝑗 − 4𝑐𝑖.
(34)

The existence and uniqueness of the solution to the above system with 𝐶 ,𝐶 < 0 is given in Lemma 1 in the online Appendix A.7.
10
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Characterization of the reversible regime (𝑧 < �̄�) and threshold-crossing conditions As derived in Section 4.2, 𝑃𝑖 (𝑧) ≡ 𝑉 ′
𝑖 (𝑧) satisfies

20). This is a linear system of differential equations for 𝑃1 and 𝑃2. Solving 𝑃 ′
1 and 𝑃 ′

2 from the system, we can write

𝑃 ′
𝑖 =

2
[

2𝑎 + 𝑃1 + 𝑃2 − 2𝛿 (𝑧)
] [(

𝑟 + 𝛿′ (𝑧)
)

𝑃𝑖 + 2𝑐𝑖𝑧
]

− 2𝑃𝑖
[

(𝑟 − 𝛽)𝑃𝑗 + 2𝑐𝑗𝑧
]

[

2𝑎 + 𝑃1 + 𝑃2 − 2𝛿 (𝑧)
]2 − 𝑃1𝑃2

(35)

or 𝑖, 𝑗 = 1, 2, 𝑗 ≠ 𝑖. The terminal values 𝑃𝑖 (�̄�) are obtained by solving (19) at �̄�, which takes the form

𝑟𝑉𝑖 =
1
4
(

𝑎𝑖 + 𝑃𝑖 (�̄�)
)2 + 1

2
𝑃𝑖 (�̄�)

[

𝑎𝑗 + 𝑃𝑗 (�̄�) − 2𝛿 (�̄�)
]

− 𝑐𝑖�̄�
2 for 𝑖, 𝑗 = 1, 2, 𝑗 ≠ 𝑖 (36)

with

𝑉𝑖 = 𝐴𝑖 + 𝐵𝑖�̄� +
𝐶𝑖
2
�̄�2.

ith the values 𝑃𝑖 (𝑧) for 𝑧 < �̄� solved, we can find the value function 𝑉𝑖 (𝑧) for 𝑧 < �̄� by

𝑉𝑖 (𝑧) =
1
4𝑟

(

𝑎𝑖 + 𝑃𝑖 (𝑧)
)2 + 1

2𝑟
𝑃𝑖 (𝑧)

[

𝑎𝑗 + 𝑃𝑗 (𝑧) − 2𝛿 (𝑧)
]

−
𝑐𝑖
𝑟
𝑧2.

To solve (36), we write the equation as

𝑃𝑖 (�̄�)2 + 4 (𝑎 − 𝛿 (�̄�))𝑃𝑖 (�̄�) + 2𝑃1 (�̄�)𝑃2 (�̄�) − 𝛥𝑖 = 0,

here

𝛥𝑖 = 4
(

𝑟𝑉𝑖 + 𝑐𝑖�̄�
2) − 𝑎2𝑖 .

et 𝜆 = 2𝑃1 (�̄�)𝑃2 (�̄�). Then, the equation becomes

𝑃𝑖 (�̄�)2 + 4 (𝑎 − 𝛿 (�̄�))𝑃𝑖 (�̄�) + 𝜆 − 𝛥𝑖 = 0.

he solution is

𝑃𝑖 (�̄�) = −2 (𝑎 − 𝛿 (�̄�)) ±
√

4 (𝑎 − 𝛿 (�̄�))2 + 𝛥𝑖 − 𝜆 for 𝑖 = 1, 2.

e assume that 𝑃𝑖 (�̄�) ≤ 0. Then the sign in front of the square root is positive if 𝑎 ≥ 𝛿 (�̄�) and 𝜆 ≥ 𝛥𝑖, and it is negative if 𝑎 ≥ 𝛿 (�̄�)
or if 𝑎 < 𝛿 (𝑧) and 𝜆 < 𝛥𝑖. Let 𝜎𝑖 = 1 if the sign is positive and 𝜎𝑖 = −1 if the sign is negative. We have

𝑃𝑖 (�̄�) = −2 (𝑎 − 𝛿 (�̄�)) + 𝜎𝑖
√

4 (𝑎 − 𝛿 (�̄�))2 + 𝛥𝑖 − 𝜆. (37)

Then, 𝜆 is a solution to the following equation:

𝜆 = 2
2
∏

𝑖=1

{

−2 (𝑎 − 𝛿 (�̄�)) + 𝜎𝑖
√

4 (𝑎 − 𝛿 (�̄�))2 + 𝛥𝑖 − 𝜆
}

. (38)

It ultimately follows that 𝑓 (�̄�) has the form

𝑓 (�̄�) = − (𝑎 − 𝛿 (�̄�)) + 1
2

2
∑

𝑖=1
𝜎𝑖
√

4 (𝑎 − 𝛿 (�̄�))2 + 𝛥𝑖 − 𝜆. (39)

We can now compare the outcomes of symmetric vs asymmetric equilibria.

The implications of asymmetry for equilibrium free-riding We focus on the equilibrium-state dynamics

�̇� = 𝑓 (𝑧)

in order to evaluate the sign of the emission rate 𝑓 in the neighborhood of �̄�. The emission rate 𝑓 in Period I is given by

𝑓 (𝑧) = 𝑎 + 𝑃 (𝑧) − 𝛿 (𝑧) ,

where

𝑃 (𝑧) =
𝑃1 (𝑧) + 𝑃2 (𝑧)

2
.

Intuitively, if 𝑓 (𝑧) > 0, the threshold 𝑧 is located in a 𝑧-interval where pollution keeps on accumulating, which in turn would lead
to crossing the threshold in finite time. In contrast, if 𝑓 (𝑧) < 0, the dynamic system must already have reached its long-run steady
state �̇� = 𝑓 (𝑧) = 0, which in turn would mean that the threshold will never be reached. In line with these intuitive arguments,

e compare the emission rates 𝑓 (�̄�) and 𝑓𝑠 (�̄�) under asymmetry and symmetry, respectively, to infer the role of asymmetry in
equilibrium free-riding. The next proposition presents one of the main results obtained.

Proposition 6. Suppose 𝑐1 and 𝑐2 are both positive. Let 𝑐 =
(

𝑐1 + 𝑐2
)

∕2, and let 𝑃𝑠 (𝑧) be defined as in Proposition 2. Then, there is a
�̃� > 0 and an 𝜀 > 0 such that

𝑓 (�̄�) ≤ 𝑓𝑠 (�̄�)

whenever �̄� > �̃� and |𝑐 − 𝑐 | < 𝜀.
11
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Fig. 1. Comparison of reachability conditions.

A proof is given in the online Appendix A.7. Consequently, if �̄� is unreachable in the symmetric case it is also unreachable in
the asymmetric case. Conversely, if �̄� is reachable in the asymmetric case, it is also reachable in the symmetric case.

Note that the property according to which crossing the irreversibility threshold is more frequent under symmetry comes naturally
from the fact that the equilibrium emission rate is greater in the latter, reflecting more intensive free-riding. We also note that the
results are obtained for bounded asymmetry (|

|

𝑐1 − 𝑐2|| < 𝜀). In fact, we demonstrate in the online Appendix A.8 that this property
holds for extreme asymmetry: 𝑐1 = 0, 𝑐2 = 2𝑐 > 0. This limit case is indeed the one that displays the lowest level of free-riding (for
the same total cost per unit of pollution, which reinforces the ‘‘local’’ result obtained just above. We dig deeper into the economics
below.

6. Reachability, irreversibility, and institutional settings

This section synthesizes the main results of the sections above and provides additional comparative results. The first section
focuses on the threshold reachability conditions essentially established in the above Propositions 1, 4, 5 and Corollary 1. The second
section compares long-term outcomes once the irreversibility threshold is crossed, under different competition settings.

6.1. Reachability conditions under different competition settings

Fig. 1 summarizes the reachability conditions of threshold 𝑧 in terms of the average cost parameter
(

𝑐1 + 𝑐2
)

∕2 = 𝑐 under the
different settings, including the symmetric and asymmetric competition (including the extreme case, with 𝑐1 = 0) described in
Section 5 and analyzed in detail in the online Appendix A.8).

Before any further investigation, we must remark that in the last part of Fig. 1, the position of 𝐶𝑠 depends on the combination
of parameters. In the case where 𝑎 > 𝛿 (�̄�),

𝐶𝑠 = �̄� > 1
3�̄�

(

𝑟 + 𝛿′ (�̄�)
)

(𝑎 − 𝛿 (�̄�)) = 𝐶𝑒 > 𝐶𝑐

by Corollary 1, where �̄� is the largest solution to Eq. (31). In the case where 𝑎 < 𝛿 (�̄�), by Proposition 5 𝐶𝑠 = 𝐶𝑒, provided that (29)
holds. In particular, in the case where 𝑎 > 𝛿 (�̄�), the ranking of 𝐶𝑠 > 𝐶𝑒 > 𝐶𝑐 is unambiguous.

It is straightforward that regardless of the position of 𝐶 (see Corollary 1), the 𝑧-unreachable interval, that is, [𝐶𝑐 ,∞), is the
largest. This is not surprising as central planning yields the best scenario. The ranking between symmetric and extreme asymmetric
competition is rather complicated as it depends on the location of 𝐶. In the case of the bottom part of Fig. 1, the unreachable cost
interval is larger under extreme asymmetric competition than in the symmetric situation: [𝐶,∞) ⊂ [𝐶𝑒,∞). But it may happen that
𝐶 < 𝐶𝑒, given the condition in Corollary 1, and then the opposite conclusion is true. The extra condition 𝐶, defined in Corollary 1,
comes directly from the competition differences; the intuition behind this condition was explained below Proposition 4. In the case
where there is only one decision-maker who cares about the accumulated pollution cost (who suffers the most from the accumulation
of pollution) – either the central planner or player 2 in the extreme asymmetric competition – the decision is made unambiguously
depending on the cost-gain benefit analysis (explained below Proposition 1). This yields the conditions in terms of the threshold
values 𝐶𝑐 , 𝐶𝑠, and 𝐶𝑒. However, between these two polar cases – for , under symmetric competition – both players’ efforts additionally
depend on conditions of type (26), that is, on the cost generated by pollution accumulation at the threshold level compared to
their respective net values. To compare the reachability of �̄� in the case of asymmetric competition, we take into consideration
12
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Proposition 6 and the continuity of the emission rates with respect to 𝑐1 and 𝑐2. For a fixed value of 𝑐 =
(

𝑐1 + 𝑐2
)

∕2, the pollution
growth rate in the asymmetric case, 𝑓𝑎 (𝑧), is close to the rate in the symmetric case, 𝑓𝑠 (𝑧), if the gap |

|

𝑐1 − 𝑐2|| is small, and 𝑓𝑎 (𝑧)
s close to the rate of the extreme asymmetric case, 𝑓𝑒 (𝑧), if the gap |

|

𝑐1 − 𝑐2|| is large. In view of Proposition 6, 𝑓𝑎 (�̄�) ≤ 𝑓𝑠 (�̄�) if �̄� is
large and the gap is small. Hence, if such a �̄� is unreachable in the symmetric case, it is also unreachable in the asymmetric case,
provided that the gap |

|

𝑐1 − 𝑐2|| is small. On the other hand, if the gap |

|

𝑐1 − 𝑐2|| is large, 𝑓𝑎 (�̄�)–being close to 𝑓𝑒 (�̄�), which is negative
for 𝑐 > 𝐶𝑒–is also negative. Hence, �̄� is again unreachable. For those 𝑐 that satisfy

𝐶𝑒 < 𝑐 < 𝐶𝑠,

as shown in Example 3 �̄� is reachable if |
|

𝑐1 − 𝑐2|| is sufficiently small and is unreachable if |
|

𝑐1 − 𝑐2|| is sufficiently large. These facts
appear to indicate that in terms of the ease of crossing the threshold, �̄�, the asymmetric case is between the extreme asymmetric
case and the symmetric case and depends on the gap |

|

𝑐1 − 𝑐2|| in a decreasing way.

6.2. Institutional settings and long-term pollution outcomes

In this section, we provide an ordering of steady-state pollution levels with the four strategic settings so far considered once
the irreversible threshold is crossed. Interestingly, we uncover that asymmetric games deliver less pollution in the long run than
symmetric ones. We dig into the intuition and the economic interpretation later.

Let the steady states of pollution in the irreversible regime be denoted by 𝑧∗𝑐 , 𝑧∗𝑠 , 𝑧∗𝑒 , and 𝑧∗𝑎 for the central planner, symmetric,
Nash extreme asymmetric Nash (𝑐1 = 0), and asymmetric Nash cases (𝑐1, 𝑐2 ≠ 0), respectively. The first three are given by (7), (14),
and the online Appendix (92), respectively, and it can be shown – similar to the derivation of 𝑧∗𝑠 – that

𝑧∗𝑎 =
2𝑎

(

𝜆 + 𝑟2 + 𝑟
√

𝑟2 + 4 (2𝑐 − 𝜆)
)

𝑟 (4𝑐 − 𝜆) + (4𝑐 − 3𝜆)
√

𝑟2 + 4 (2𝑐 − 𝜆)
, (40)

with 𝜆 being the unique positive solution to the following equation:
(

𝑟 −
√

𝑟2 + 4
(

𝑐1 − 𝜆
)

)(

𝑟 −
√

𝑟2 + 4
(

𝑐2 − 𝜆
)

)

= 2𝜆. (41)

In the online Appendix A.7, we show the following ranking.

roposition 7. For any non-negative 𝑐1 and 𝑐2, the steady states of pollution without decay, 𝑧∗𝑐 , 𝑧∗𝑒 , 𝑧∗𝑠 , and 𝑧∗𝑎, given by (7), (92), (14),
nd (40), respectively, with 𝑐 =

(

𝑐1 + 𝑐2
)

∕2, are ordered as

𝑧∗𝑐 < 𝑧∗𝑒 < 𝑧∗𝑎 < 𝑧∗𝑠 .

We first illustrate the finding with a numerical example.

xample 2. Using the same parameter values as in Example 1, TW show that the threshold 𝑧 = 200 is reached in finite time. We
have shown in Examples 1–3 that the same 𝑧 is reached in all other cases for equivalent parameter values. In addition, the limit of
𝑧(𝑡) is 𝑧∗𝑐 = 450 in the central planner case (with 𝑐 = 0.002), 𝑧∗𝑠 = 939.74 in the symmetric case (with 𝑐1 = 𝑐2 = 0.002), and 𝑧∗𝑒 = 900
in the extreme asymmetric case (with 𝑐1 = 0 and 𝑐2 = 0.004). For the asymmetric case with 𝑐1 = 0.0015 and 𝑐2 = 0.0025, the limit is
𝑧∗𝑎 = 937.14. Thus, the ranking in the proposition is satisfied.

The intuition behind Proposition 7 is the following. The steady states are comparable only if they lie within the same pollution
regime; we focus on the irreversible regime with zero decay, which is the more original exercise in this respect. Obviously, the
central planner’s optimal choice yields the best outcome with the lowest pollution accumulation. The other three cases are more
intricate to compare at once, but we can visualize the results better if we compare first the symmetric and extreme asymmetric
configurations, as the general asymmetric setting can be approached as an intermediate case between the two former.

Consider the pollution accumulation dynamics �̇� = 𝑦1 + 𝑦2 and the efforts of both players 𝑦𝑖 =
𝑎𝑖
2 + 𝐵𝑖+𝐶𝑖𝑧

2 and 𝑦𝑚𝑖 = 𝑎𝑖
2 + 𝐵𝑚+𝐶𝑚𝑧

2
under extreme asymmetric and symmetric competition, respectively. Given 𝐵𝑖 ≤ 0, 𝐵𝑚 < 0, and 𝐶𝑖 < 0, 𝐶𝑚 < 0, we can interpret
𝐵𝑖+𝐶𝑖𝑧

2 and 𝐵𝑚+𝐶𝑚𝑧
2 as the effort made by players to reduce pollution accumulation in these two cases. Thus, it is straightforward to see

hat under the extreme asymmetric competition (𝑐1 = 0), player 1 makes no effort to help reducing pollution (since 𝐶1 = 0, 𝐵1 = 0). In
contrast, player 2, who bears the highest cost from the accumulation of pollution, will make a substantial effort to reduce pollution.
It is easy to show that

𝐶2
2

< 𝐶𝑚 < 0 and
𝐵2
2

< 𝐵𝑚 < 0.

Thus, for any 𝑧 it follows that at the aggregate level,
𝐵2 + 𝐶2𝑧

2
< 𝐵𝑚 + 𝐶𝑚𝑧.

n other words, under extreme asymmetric competition, player 2 with 𝑐2 = 2𝑐 makes more effort to clean up pollution than the sum
f two players in the symmetric case (𝑐1 = 𝑐2 = 𝑐). In the symmetric case, the well-known free-riding mechanism is fully at work:
oth players wait for the other to make more effort, and neither ends up making enough effort. The general asymmetric case lies in
13
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between: The player who faces higher accumulated pollution damage will make more effort to reduce pollution, while the one that
is less sensitive to accumulated pollution free-rides on the other’s efforts. But the global impact of free-riding is lower than under
symmetry.6

7. Conclusion

In this paper, we have developed an extension of the TW hard pollution irreversibility problem to differential game settings. As
e have kept the inherent original non-concavity feature, the induced mathematical setting is highly non-trivial. However, we have
een able to provide a comprehensive theoretical analysis of the considered games. Abstracting from the methodological insight,
ome original contributions should be stressed. First, considering that pollution costs are evenly distributed across players, we have
ccurately characterized the extent of the irreversibility penalty in this case relative to cooperation. Moreover, we have compared
he open-loop with the MPE strategies regarding the reachability of the irreversible regime, and find that feedback control inherent
n MPE might well significantly lower the probability to cross the irreversibility thresholds. Finally, we have studied the implications
f asymmetry in the pollution cost. We find that for equal total pollution costs, asymmetric equilibria produce a lower emission rate
han the symmetric under some mild conditions, thereby driving the system to irreversibility less frequently than the latter. Finally,
e have proven that provided the irreversible regime is reached in both the symmetric and asymmetric cases, long-term pollution

s greater in the symmetric case, reflecting more intensive free-riding under symmetry.
Needless to say, our results are worth examining in richer settings. One quite interesting extension – also extending the related

nalysis of Barrett (2013) from static to dynamic games – would be to consider uncertainty either in the value of irreversibility
hresholds (�̄�) or in the extent of irreversibility (that is, under a random magnitude of the drop in pollution decay for a given
hreshold). A second even more promising avenue is to exploit our finding regarding free-riding in symmetric versus asymmetric
ames for the design of international environmental agreements (see, for example, Carraro and Siniscalco (1993)). In the typical
ase (symmetric game with 𝑛 players), the key parameter is the size of the coalition (see Wagener and de Zeeuw (2021)). Our results
ndicate that cost heterogeneity (or perhaps other types of heterogeneity) might also be very relevant. Obviously, it is not granted
hat we can keep the fully analytical approach when dealing with these natural extensions.
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