[en] Liquid crystals (LCs) have attracted enormous interest because of the variety of their phases and richness of their applications. Here, we revisit a selection of recent results that highlight the interplay between general physical symmetries, confinements (induced by solid interfaces),and microfluidic environments that reveal a range of intriguing phenomena. We start the chapter with recent results on nematic reentrancy under confinement to nanoscopic scales. Thereafter, we focus on the complex interplay of confinement and surface anchoring conditions that engenders topological defect structures in both nematics and cholesterics. We review how hydrodynamic flow interacts with the LC director,deforms topological defect lines, and ushers in a surprising behavior:low Reynolds number cavitation. Finally, we showcase recent results on the complex interaction between colloidal inclusions embedded in flowing LCs.
Disciplines :
Physique
Auteur, co-auteur :
SENGUPTA, Anupam ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Mazza, Marco G
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Liquid Crystals at Interfaces and Under Flow: Recent Advances and Trends
Date de publication/diffusion :
2020
Titre de l'ouvrage principal :
Liquid Crystals at Interfaces and Under Flow: Recent Advances and Trends
O. Lehmann, Über fliessende Krystalle. Z. Phys. Chem., 4, 462–472 (1889).
R. Schenk, Kristallinische Flüssigkeiten und Flüssige Kristalle (Engelmann, Germany, 1905).
D. Vorländer, Kristallinische Flüssige Substanzen (Enke, Germany, 1908).
G. Friedel, Les états mésomorphes de la matière. Ann. Phys., 18, 273–274 (1922).
H. Coles and S. Morris, Liquid-crystal lasers. Nat. Photonics, 4, 676–685 (2010).
T. E. Strzelecka, M. W. Davidson, and R. L. Rill, Multiple liquid crystal phases of dna at high concentrations. Nature, 331, 457–460 (1988).
M. Nakata, G. Zanchetta, B. D. Chapman, C. D. Jones, J. O. Cross, R. Pindak, T. Bellini, and N. A. Clark, End-to-end stacking and liquid crystal condensation of 6- to 20-base pair dna duplexes. Science, 318, 1276–1279 (2007).
F. Vollrath, and D. P. Knight, Liquid crystalline spinning of spider silk. Nature, 410, 541 (2001).
S. J. Woltman, G. D. Jay, and G. P. Crawford, Liquid-crystal materials find a new order in biomedical applications. Nat. Mater., 6, 929–938 (2007).
J. W. Goodby, I. M. Saez, S. J. Cowling, V. Görtz, M. Draper, A. W. Hall, S. Sia, G. Cosquer, S.-E. Lee, and E. P. Raynes, Transmission and amplification of information and properties in nanostructured liquid crystals. Angew. Chem. Int. Ed., 47, 2754–2787 (2008).
A. Sengupta, S. Herminghaus, and C. Bahr, Liquid crystal microfluidics: Surface, elastic and viscous interactions at microscales. Liq. Cryst. Rev., 2, 73 (2014).
M. Urbanski, C. Reyes, J. H. Noh, A. Sharma, Y. Geng, V. Jampani, and J. Lagerwall, Liquid crystals in micron-scale droplets, shells and fibers. J. Phys., Condens. Matter, 29, 133003 (2017).
M. Miesowicz, The three coefficients of viscosity of anisotropic liquids. Nature, 158, 27 (1946).
F. Leslie, Some constitutive equations for anisotropic fluids. Q. J. Mech. Appl. Math., 19, 357 (1966).
F. Leslie, Some constitutive equations for liquid crystals. Ration. Mech. Anal., 28, 265 (1968).
P. Pieranski, and E. Guyon, Transverse effects in nematic flows. Phys. Lett. A, 49, 237 (1974).
I. Jánossy, P. Pieranski, and E. Guyon, Poiseuille flow in nematics: Experimental study of the instabilities. J. Phys. France, 37, 1105 (1976).
H. Stark, Physics of colloidal dispersions in nematic liquid crystals. Phys. Rep., 351, 387 (2001).
S. Mondal, A. Majumdar, and I. M. Griffiths, Nematohydrodynamics for colloidal self-assembly and transport phenomena. arXiv:1707.09015.
A. Sengupta, U. Tkalec, M. Ravnik, J. M. Yeomans, C. Bahr, and S. Herminghaus, Liquid crystal microfluidics for tunable flow shaping. Phys. Rev. Lett., 110, 048303 (2013).
A. Tiribocchi, J. Lintuvuori, O. Henrich, and D. Marenduzzo, Switching hydrodynamics in liquid crystal devices: A simulation perspective. Soft Matter, 10, 4580 (2014).
V. M. O. Batista, M. L. Blow, and M. M. T. da Gama, The effect of anchoring on the nematic flow in channels. Soft Matter 11, 4674 (2015).
P. E. Cladis, New liquid–crystal phase diagram. Phys. Rev. Lett., 35, 48 (1975).
J. L. Figueirinhas, C. Cruz, A. C. Ribeiro, and N. Huu Tinh, NMR study of molecular order in a liquid crystal with smectic Ad and reentrant nematic mesophases: A comparative study with models for the SmAd phase. Mol. Cryst. Liq. Cryst., 212, 263–270 (1992).
P. E. Cladis, R. K. Bogardus, W. B. Daniels, and G. Taylor, High-pressure investigation of the reentrant nematic — bilayer-smectic — A transition. Phys. Rev. Lett., 39, 720 (1977).
P. E. Cladis, R. K. Bogardus, and D. Aadsen, High-pressure investigation of the reentrant nematic bilayer smectic — A transition. Phys. Rev. A, 18, 2292 (1978).
S. Diele, G. Pelzl, I. Latif, and D. Demus, X-ray investigations of a reentrant nematic phase formed of terminal-nonpolar compounds. Mol. Cryst. Liq. Cryst., 92, 27–33 (1983).
G. Pelzl, I. Latif, S. Diele, M. Novak, D. Demus, and H. Sackmann, Reentrant nematic phases in binary systems of terminal-nonpolar compounds. Mol. Cryst. Liq. Cryst., 139, 333–351 (1986).
M. G. Mazza and M. Schoen, Structure and dynamics of reentrant nematics: Any open questions after almost 40 years? Int. J. Mol. Sci., 12, 5352–5372 (2011).
M. Schoen and S. H. L. Klapp, Nanoconfined Fluids. Soft Matter Between Two and Three Dimensions. (Wiley-VCH, Hoboken, 2007).
M. Schoen and G. Günther, Phase transitions in nanoconfined fluids: Synergistic coupling between soft and hard matter. Soft Matter, 6, 5832–5838 (2010).
M. Schoen, Fluid bridges confined between chemically nanopatterned solid substrates. Phys. Chem. Chem. Phys., 10, 223–256 (2008).
M. G. Mazza, M. Greschek, R. Valiullin, J. Kärger, and M. Schoen, Entropy-driven enhanced self-diffusion in confined reentrant supernematics. Phys. Rev. Lett., 105, 227802 (2010).
M. G. Mazza, M. Greschek, R. Valiullin, and M. Schoen, Role of stringlike, supramolecular assemblies in reentrant supernematic liquid crystals. Phys. Rev. E, 83, 051704 (2011).
B. Martínez-Haya, A.Cuetos, S. Lago, and L. F. Rull, A novel orientation-dependent potential model for prolate mesogens. J. Chem. Phys., 122, 024908 (2005).
M. P. Allen, Diffusion coefficient increases with density in hard ellipsoid liquid crystals. Phys. Rev. Lett., 65, 2881–2884 (1990), doi:10.1103/ PhysRevLett.65.2881.
L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, London, 1980).
M. Karplus and J. N. Kushick, Unbekannter titel. Macromolecules 14, 325 (1981).
S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1992).
P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, International Series of Monographs on Physics (Oxford University Press, USA, 1995).
A. Sengupta, U. Tkalec, and C. Bahr, Nematic textures in microfluidic environment. Soft Matter, 7, 6542 (2011).
A. Sengupta, S. Herminghaus, and C. Bahr, Opto-fluidic velocimetry using liquid crystal microfluidics. Appl. Phys. Lett., 101, 164101 (2012).
A. Sengupta, C. Pieper, J. Enderlein, C. Bahr, and S. Herminghaus, Flow of a nematogen past a cylindrical micro-pillar. Soft Matter, 9, 1937 (2013).
A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, Functionalization of microfluidic devices for investigation of liquid crystal flows. Microfluid. Nanofluid., 13, 941 (2012).
A. Sengupta, C. Bahr, and S. Herminghaus, Topological microfluidics for flexible micro-cargo concepts. Soft Matter, 9, 7251 (2013).
A. Sengupta, Topological constraints in a microfluidic platform. Liq. Cryst., 41, 290 (2014).
A. Sengupta, Topological Microfluidics (Springer International Publishing, Switzerland, 2013).
A. B. Nych, D. Y. Reznikov, O. P. Boiko, V. G. Nazarenko, V. M. Pergamenshchik, and P. Bos, Alignment memory of a nematic liquid crystal and thermal isotropization of the surface adsorbed layer. Eur. Phys. Lett., 81, 16001 (2008).
Y. Guo, S. Afghah, J. Xiang, O. D. Lavrentovich, R. L. B. Selinger, and Q.H. Wei, Cholesteric liquid crystals in rectangular microchannels: Skyrmions and stripes. Soft Matter, 12, 6312 (2016).
M. P. Valignat, S. Villette, J. Li, R. Barberi, R. Bartolino, E. Dubois-Violette, and A. M. Cazabat, Wetting and anchoring of a nematic liquid crystal on a rough surface. Phys. Rev. Lett., 77, 1994 (1996).
J. Ignés-Mulld, J. Baudry, and P. Oswald, Anchoring of a nematic liquid crystal on a wettability gradient. Phys. Rev. E. 63, 031701 (2001).
T. Ohzono, and J. I. Fukuda, Anchoring of a nematic liquid crystal on a wettability gradient. Nat. Commun., 3, 701 (2012).
V. Vitelli, and A. M. Turner, Anomalous coupling between topological defects and curvature. Phys. Rev. Lett., 93, 215301 (2004).
J. Schmidtke, L. Lu, H. S. Kitzerow, and E. M. Terentjevi, Liquid crystal lasers: Recent advances. Proceedings SPIE 8642 Emerging Liquid Crystal Technologies VIII, (2013), p. 864209.
P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I. Smalyukh, Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics. Phys. Rev. E, 90, 012505 (2014).
J. Noh, I. Drevensek-Olenik, J. Yamamoto, and J. P. F. Lagerwall, Dynamic and complex optical patterns from colloids of cholesteric liquid crystal droplets. Proceedings of SPIE 9384 Emerging Liquid Crystal Technologies X, (2015), p. 93840T.
J. Oswald, J. Baudry, and S. Pirkl, Static and dynamic properties of cholesteric fingers in electric field. Phys. Rep., 337, 67 (2000).
L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film. Polymers, 9, 295 (2017).
A. Sengupta, Tuning fluidic resistance via liquid crystal microfluidics. Int. J. Mol. Sci., 14, 22826 (2013).
J. Ananthaiah, R. Sahoo, M. V. Rasna, and S. Dhara, Rheology of nematic liquid crystals with highly polar molecules. Phys. Rev. E, 89, 022510 (2014).
M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip, 7, 1479 (2007).
C. J. Morris and F. K. Foster, Oscillatory flow in microchannels–comparison of exact and approximate impedance models with experiments. Exp. Fluids, 36, 928 (2004).
P. Oswald, and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (CRC press, Boca Raton, 2005).
R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press Inc., New York, 1999).
O. Wiese, D. Marenduzzo, and O. Henrich, Microfluidic flow of cholesteric liquid crystals. Soft Matter, 12, 9223 (2016).
W. Helfrich, Capillary flow of cholesteric and smectic liquid crystals. Phys. Rev. Lett., 23, 372 (1969).
R. S. Porter, E. M. Barrall, and J. F. Johnson, Some flow characteristics of mesophase types. J. Chem., 45, 1452 (1964).
N. Scaramuzza, F. Simoni, and R. Bartolino, Permeative flow in cholesteric liquid crystals. Phys. Rev. Lett., 53, 2246 (1984).
D. Marenduzzo, E. Orlandini, and J. M. Yeomans, Permeative flows in cholesteric liquid crystals. Phys. Rev. Lett., 92, 188301 (2004).
T. Stieger, H. Agha, M. Schoen, M. G. Mazza, and A. Sengupta, Hydrodynamic cavitation in stokes flow of anisotropic fluids. Nat. Commun., 8, 15550 (2017).
J. Deschamps, J. P. M. Trusler, and G. Jackson, Vapor pressure and density of thermotropic liquid crystals: MBBA, 5CB, and novel fluorinated mesogens. J. Phys. Chem. B, 112, 3918 (2008).
L. Giomi, Ž. Kos, M. Ravnik, and A. Sengupta, Cross-talk between topological defects in different fields revealed by nematic microfluidics. Proc. Natl. Acad. Sci. USA, 114, E5771 (2017).
E. Brasselet, Tunable optical vortex arrays from a single nematic topological defect. Phys. Rev. Lett., 108, 087801 (2012).
M. Čančula, M. Ravnik, and S. Žumer, Generation of vector beams with liquid crystal disclination lines. Phys. Rev. E, 90, 022503 (2014).
T. Stieger, M. Schoen, and M. G. Mazza, Effects of flow on topological defects in a nematic liquid crystal near a colloid. J. Chem. Phys., 140, 054905 (2014).
P. Poulin, H. Stark, T. Lubensky, and D. Weitz, Novel colloidal interactions in anisotropic fluids. Science, 275, 1770–1773 (1997).
V. G. Nazarenko, A. B. Nych, and B. I. Lev, Crystal structure in nematic emulsion. Phys. Rev. Lett., 87, 075504 (2001).
I. Muševič, Nematic colloids, topology and photonics. Philos. Trans. R. Soc. A, 371, 20120266 (2013).
P. S. Drzaic, Polymer dispersed nematic liquid crystal for large area displays and light valves. J. Appl. Phys., 60, 2142–2148 (1986).
M. Humar, M. Ravnik, S. Pajk, and I. Muševič, Electrically tunable liquid crystal optical microresonators. Nat. Photonics, 3, 595–600 (2009).
S. V. Shiyanovskii, T. Schneider, I. I. Smalyukh, T. Ishikawa, G. D. Niehaus, K. J. Doane, C. J. Woolverton, and O. D. Lavrentovich, Real-time microbe detection based on director distortions around growing immune complexes in lyotropic chromonic liquid crystals. Phys. Rev. E, 71, 020702 (2005).
V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, Optical amplification of ligand-receptor binding using liquid crystals. Science, 279, 2077–2080 (1998).
J. Fang, W. Ma, J. V. Selinger, and R. Shashidhar, Imaging biological cells using liquid crystals. Langmuir, 19, 2865–2869 (2003).
R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Droplet based microfluidics. Rep. Prog. Phys., 75, 016601 (2011).
T. Stieger, S. Püschel-Schlotthauer, M. Schoen, and M. G. Mazza, Flow-induced deformation of closed disclination lines near a spherical colloid immersed in a nematic host phase. Mol. Phys., 114, 259–275 (2016).
J. J. Erpenbeck, Shear viscosity of the hard-sphere fluid via nonequilibrium molecular dynamics. Phys. Rev. Lett., 52, 1333 (1984).
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511–519 (1984).
S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys., 52, 255–268 (1984).
W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31, 1695 (1985).
S. D. Stoyanov, and R. D. Groot, From molecular dynamics to hydrodynamics: a novel galilean invariant thermostat. J. Chem. Phys., 122, 114112 (2005).
R. D. Groot, A local galilean-invariant thermostat. J. Chem. Theory Com-put., 2, 568–574 (2006).
M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, Interactions of quadrupolar nematic colloids. Phys. Rev. E, 77, 031705 (2008).
B. T. Gettelfinger, J. A. Moreno-Razo, G. M. Koenig Jr, J. P. Hernández-Ortiz, N. L. Abbott, and J. J. de Pablo, Flow-induced deformation of defects around nanoparticles and nanodroplets suspended in liquid crystals. Soft Matter, 6, 896–901 (2010).
M. Yoneya, J.I. Fukuda, H. Yokoyama, and H. Stark, Effect of a hydrodynamic flow on the orientation profiles of a nematic liquid crystal around a spherical particle. Mol. Cryst. Liq. Cryst., 435, 75–735 (2005).
T. Araki, and H. Tanaka, Surface-sensitive particle selection by driving particles in a nematic solvent. J. Phys., Condens. Matter, 18, L193 (2006).
C. Zhou, P. Yue, J. J. Feng, The rise of newtonian drops in a nematic liquid crystal. J. Fluid Mech., 593, 385–404 (2007).
S. Khullar, C. Zhou, and J. J. Feng, Dynamic evolution of topological defects around drops and bubbles rising in a nematic liquid crystal. Phys. Rev. Lett., 99, 237802 (2007).
M. Tasinkevych, N. M. Silvestre, and M. M. Telo da Gama, Liquid crystal boojum-colloids. New J. Phys., 14, 073030 (2012).
P. Poulin, and D. Weitz, Inverted and multiple nematic emulsions. Phys. Rev. E, 57, 626–637 (1998).
S. Püschel-Schlotthauer, T. Stieger, M. Melle, M. G. Mazza, and M. Schoen, Coarse-grained treatment of the self-assembly of colloids suspended in a nematic host phase. Soft Matter, 12, 469–480 (2016).
I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal. Phys. Rev. Lett., 95, 157801 (2005).
M. Melle, S. Schlotthauer, M. G. Mazza, S. H. L. Klapp, and M. Schoen, Defect topologies in a nematic liquid crystal near a patchy colloid. J. Chem. Phys., 136, 19, 194703 (2012).
S. Puschel-Schlotthauer, V. Meiwes Turrion, C. K. Hall, M. G. Mazza, and M. Schoen, The impact of colloidal surface-anchoring on the smectic a phase. Langmuir, 33, 2222–2234 (2017).
K. P. Zuhail, P. Sathyanarayana, D. Seč, S. Čopar, M. Škarabot, I. Muševič, and S. Dhara, Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic—a phase transition. Phys. Rev. E, 91, 030501 (2015).
K. P. Zuhail, and S. Dhara, Temperature dependence of equilibrium separation and lattice parameters of nematic boojum-colloids. Appl. Phys. Lett., 106, 211901 (2015).
K. P. Zuhail, S. Čopar, I. Muševič, and S. Dhara, Spherical microparticles with saturn ring defects and their self-assembly across the nematic to smectic — a phase transition. Phys. Rev. E, 92, 052501 (2015).
S. Püschel-Schlotthauer, V. Meiwes Turrión, T. Stieger, R. Grotjahn, C. K. Hall, M. G. Mazza, and M. Schoen, A novel model for smectic liquid crystals: Elastic anisotropy and response to a steady-state flow. J. Chem. Phys., 145, 164903 (2016).
M. C. Choi, T. Pfohl, Z. Wen, Y. Li, M. W. Kim, J. N. Israelachvili, and C. R. Safinya, Ordered patterns of liquid crystal toroidal defects by microchannel confinement. Proc. Natl. Acad. Sci. USA, 101, 17340–17344 (2004).
B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, Topological colloids. Nature, 493, 200 (2013).
J. Dontabhaktuni, M. Ravnik, and S. Žumer, Quasicrystalline tilings with nematic colloidal platelets. Proc. Nat. Acad. Sci. USA, 111, 2464 (2014).
M. A. Gharbi, D. A. Beller, N. S. Mood, R. Gupta, R. D. Kamien, S. Yang, and K. J. Stebe, Elastocapillary driven assembly of particles at free-standing smectic-a films. Langmuir, 34, 2006–2013 (2018).
H. S. Kitzerow, Handbook of Liquid Crystals. Photonic Micro- and Nanostructures, Metamaterials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014).
I. Mušvič, Integrated and topological liquid crystal photonics. Liq. Cryst. 41, 418 (2014).
M. Humar, Liquid-crystal-droplet optical microcavities. Liq. Cryst., 43, 1937 (2016).
K. Chen, L. P. Metcalf, D. Rivas, D. H. Reich, and R. L. Leheny, Anisotropic colloidal transport and periodic stick-slip motion in cholesteric finger textures. Soft Matter, 11, 4189 (2015).
F. Serra, Curvature and defects in nematic liquid crystals. Liq. Cryst. 43, 1920 (2016).
K. Chen, O. J. Gebhardt, R. Devendra, G. Drazer, R. D. Kamien, D. H. Reich, and R. L. Leheny, Colloidal transport within nematic liquid crystals with arrays of obstacles. Soft Matter, 14, 83 (2018).
D. Pires, J. B. Fleury, and Y. Galerne, Colloid particles in the interaction field of a disclination line in a nematic phase. Phys. Rev. Lett., 98, 247801 (2007).
P. Poulin, V. Cabuil, and D. A. Weitz, Direct measurement of colloidal forces in an anisotropic solvent. Phys. Rev. Lett., 79, 4862 (1997).
A. Sengupta, Topological microfluidics: present and prospects, Liquid Crystals Today, 24(3), 70–80 (2015).