Bertsimas D. Boussioux L. Wright R. Delarue A. Kitane D. Lukin G. et al. (2020). COVIDanalytics Project. [Dataset].
Boni M. F. Lemey P. Jiang X. Lam T. T.-Y. Perry B. W. Castoe T. A. et al. (2020). Evolutionary Origins of the SARS-CoV-2 Sarbecovirus Lineage Responsible for the COVID-19 Pandemic. Nat. Microbiol. 5, 1408–1417. 10.1038/s41564-020-0771-4
Bryant P. Elofsson A. (2020). Estimating the Impact of Mobility Patterns on Covid-19 Infection Rates in 11 European Countries. PeerJ 8, e9879. 10.7717/peerj.9879
Capponi A. Fiandrino C. Kantarci B. Foschini L. Kliazovich D. Bouvry P. (2019). A Survey on Mobile Crowdsensing Systems: Challenges, Solutions and Opportunities. IEEE Commun. Surv. Tutorials 21, 2419–2465. 10.1109/COMST.2019.2914030
Capponi A. Vitello P. Fiandrino C. Cantelmo G. Kliazovich D. Sorger U. et al. (2019). “Crowdsensed Data Learning-Driven Prediction of Local Businesses Attractiveness in Smart Cities”, in Proc. of IEEE Symposium on Computers and Communications, Barcelona, Spain, July 2019 (New York, NY: IEEE), 1–6.
Dahlberg M. Edin P.-A. Grönqvist E. Lyhagen J. Östh J. Siretskiy A. et al. (2020). Effects of the Covid-19 Pandemic on Population Mobility under Mild Policies: Causal Evidence From Sweden. [Dataset].
D’Silva K. Noulas A. Musolesi M. Mascolo C. Sklar M. (2018). Predicting the Temporal Activity Patterns of New Venues. EPJ Data Sci. 7, 13. 10.1140/epjds/s13688-018-0142-z
Egwolf B. Austriaco N. (2020). Mobility-guided Modeling of the COVID-19 Pandemic in Metro Manila. medRxiv. 10.1101/2020.05.26.20111617
Engle S. Stromme J. Zhou A. (2020). Staying at Home: Mobility Effects of Covid-19. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3565703 (Accessed April 15, 2020).
Ericsson Research (2020). Mobility Report June 2020. Available at: https://www.ericsson.com/en/mobility-report?gclid=EAIaIQobChMI8dbz3-Ov8AIVT6uWCh2tngN7EAAYASAAEgKZlPD_BwE&gclsrc=aw.ds [Dataset].
Favale T. Soro F. Trevisan M. Drago I. Mellia M. (2020). Campus Traffic and E-Learning during COVID-19 Pandemic. Comput. Netw. 176, 107290. 10.1016/j.comnet.2020.107290
Feldmann A. Gasser O. Lichtblau F. Pujol E. Poese I. Dietzel C. et al. (2020). “The Lockdown Effect: Implications of the COVID-19 Pandemic on Internet Traffic”, in Proceedings of the ACM Internet Measurement Conference (IMC), October, 2020 (New York, NY: Association for Computing Machinery), 65–72.
Kapoor A. Ben X. Liu L. Perozzi B. Barnes M. Blais M. et al. (2020). Examining Covid-19 Forecasting Using Spatio-Temporal Graph Neural Networks. arXiv preprint arXiv:2007.03113.
Kendall M. Parker M. Fraser C. Nurtay A. Wymant C. Bonsall D. et al. (2020). Quantifying SARS-CoV-2 Transmission Suggests Epidemic Control with Digital Contact Tracing. Science 368, eabb6936. 10.1126/science.abb6936
Liu D. C. Nocedal J. (1989). On the Limited Memory BFGS Method for Large Scale Optimization. Math. Program. 45, 503–528. 10.1007/bf01589116
Mahajan V. Cantelmo G. Antoniou C. (2021). Explaining Demand Patterns during Covid-19 Using Opportunistic Data: A Case Study of the City of Munich. Eur. Trans. Res. Rev. 13, 26. 10.1186/s12544-021-00485-3
Menni C. Valdes A. Freydin M. B. Ganesh S. El-Sayed Moustafa J. Visconti A. et al. (2020). Loss of Smell and Taste in Combination with Other Symptoms is a Strong Predictor of Covid-19 Infection. medRxiv. 10.1101/2020.04.05.20048421
Pullano G. Valdano E. Scarpa N. Rubrichi S. Colizza V. (2020). Evaluating the Effect of Demographic Factors, Socioeconomic Factors, and Risk Aversion on Mobility During the Covid-19 Epidemic in France Under Lockdown: A Population-Based Study. Lancet Digit. Health 2, e638–e649. 10.1016/S2589-7500(20)30243-0
Rahman M. M. Thill J.-C. Paul K. C. (2020). Covid-19 Pandemic Severity, Lockdown Regimes, and People’s Mobility: Early Evidence from 88 Countries. Sustainability 12, 9101. 10.3390/su12219101
Reelfs J. H. Hohlfeld O. Poese I. (2020). “Corona-Warn-App: Tracing the Start of the Official COVID-19 Exposure Notification App for Germany”, in Accepted as Poster in Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM), August, 2020 (New York, NY: Association for Computing Machinery), 1–3.
Roy A. Kar B. (2020). “Characterizing the Spread of Covid-19 From Human Mobility Patterns and Sociodemographic Indicators”, in Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities, Seattle, Washington, Nov, 2020 (New York, NY: Association for Computing Machinery). 10.1145/3423455.3430303
Sannigrahi S. Pilla F. Basu B. Basu A. S. Molter A. (2020). Examining the Association between Socio-Demographic Composition and Covid-19 Fatalities in the European Region Using Spatial Regression Approach. Sustain. Cities Soc. 62, 102418. 10.1016/j.scs.2020.102418
Simsek M. Kantarci B. (2020). Artificial Intelligence-Empowered Mobilization of Assessments in COVID-19-Like Pandemics: A Case Study for Early Flattening of the Curve. Int. J. Environ. Res. Public Health 17, 3437. 10.3390/ijerph17103437
Vitello P. Capponi A. Fiandrino C. Giaccone P. Kliazovich D. Bouvry P. (2018). “High-precision Design of Pedestrian Mobility for Smart City Simulators”, in Proc. of IEEE International Conference on Communications (ICC), Kansas City, MO, May 20, 2018 (New York, NY: IEEE), 1–6. 10.1109/ICC.2018.8422599
Wang H. Yamamoto N. (2020). Using a Partial Differential Equation With Google Mobility Data to Predict Covid-19 in Arizona. Math. Biosci. Eng. 17, 4891–4904. 10.3934/mbe.2020266
Whitelaw S. Mamas M. A. Topol E. Van Spall H. G. (2020). Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digit. Health 2, E435–E440. 10.1016/S2589-7500(20)30142-4
Zhang L. Ghader S. Pack M. L. Xiong C. Darzi A. Yang M. et al. (2020). An Interactive Covid-19 Mobility Impact and Social Distancing Analysis Platform. medRxiv. 10.1101/2020.04.29.20085472