Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
Efficient and Transferable Adversarial Examples from Bayesian Neural Networks
GUBRI, Martin; CORDY, Maxime; PAPADAKIS, Mike et al.
2022In The 38th Conference on Uncertainty in Artificial Intelligence
Peer reviewed
 

Documents


Texte intégral
2011.05074.pdf
Preprint Auteur (910.79 kB)
Preprint arXiv
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Machine Learning; Adversarial examples; Bayesian; Neural Networks; Deep Learning; Transferability
Résumé :
[en] An established way to improve the transferability of black-box evasion attacks is to craft the adversarial examples on an ensemble-based surrogate to increase diversity. We argue that transferability is fundamentally related to uncertainty. Based on a state-of-the-art Bayesian Deep Learning technique, we propose a new method to efficiently build a surrogate by sampling approximately from the posterior distribution of neural network weights, which represents the belief about the value of each parameter. Our extensive experiments on ImageNet, CIFAR-10 and MNIST show that our approach improves the success rates of four state-of-the-art attacks significantly (up to 83.2 percentage points), in both intra-architecture and inter-architecture transferability. On ImageNet, our approach can reach 94% of success rate while reducing training computations from 11.6 to 2.4 exaflops, compared to an ensemble of independently trained DNNs. Our vanilla surrogate achieves 87.5% of the time higher transferability than three test-time techniques designed for this purpose. Our work demonstrates that the way to train a surrogate has been overlooked, although it is an important element of transfer-based attacks. We are, therefore, the first to review the effectiveness of several training methods in increasing transferability. We provide new directions to better understand the transferability phenomenon and offer a simple but strong baseline for future work.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
GUBRI, Martin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
CORDY, Maxime  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
PAPADAKIS, Mike ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
LE TRAON, Yves ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Sen, Koushik;  University of California, Berkeley > Computer Sciences Division
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Efficient and Transferable Adversarial Examples from Bayesian Neural Networks
Date de publication/diffusion :
2022
Nom de la manifestation :
CONFERENCE IN UNCERTAINTY IN ARTIFICIAL INTELLIGENCE
Date de la manifestation :
from 01-08-2022 to 05-08-2022
Manifestation à portée :
International
Titre du périodique :
The 38th Conference on Uncertainty in Artificial Intelligence
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR12669767 - Testing Self-learning Systems, 2018 (01/09/2019-31/08/2022) - Yves Le Traon
Disponible sur ORBilu :
depuis le 04 janvier 2022

Statistiques


Nombre de vues
217 (dont 10 Unilu)
Nombre de téléchargements
508 (dont 1 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
5

Bibliographie


Publications similaires



Contacter ORBilu