Article (Périodiques scientifiques)
Finite-Alphabet Symbol-Level Multiuser Precoding for Massive MU-MIMO Downlink
HAQIQATNEJAD, Alireza; Kayhan, Farbod; Shahram, ShahbazPanahi et al.
2021In IEEE Transactions on Signal Processing, 69, p. 5595 - 5610
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Finite-Alphabet_Symbol-Level_Multiuser_Precoding_for_Massive_MU-MIMO_Downlink.pdf
Preprint Auteur (1.86 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Biconvex optimization; Constructive interference; Finite-alphabet symbol-level precoding; Massive MU-MIMO downlink; One-bit quantized precoding
Résumé :
[en] We propose a finite-alphabet symbol-level precoding technique for massive multiuser multiple-input multiple-output (MU-MIMO) downlink systems which are equipped with finite-resolution digital-to-analog converters (DACs) of any precision. Using the idea of constructive interference (CI), we adopt a max-min fair design criterion which aims to maximize the minimum instantaneous received signal-to-noise ratio (SNR) among the user equipments (UEs) while ensuring a CI constraint for each UE under the restriction that the output of the precoder is a vector with finite-alphabet discrete elements. Due to this latter constraint, the design problem is an NP-hard quadratic program with discrete variables, and hence, is difficult to solve. In this paper, we tackle this difficulty by reformulating the problem in several steps into an equivalent continuous-domain biconvex form, including equivalent representations for discrete and binary constraints. Our final biconvex reformulation is obtained via an exact penalty approach and can efficiently be solved using a standard cyclic block coordinate descent algorithm. We evaluate the performance of the proposed finite-alphabet precoding design for DACs with different resolutions, where it is shown that employing low-resolution DACs can lead to higher power efficiencies. In particular, we focus on a setup with one-bit DACs and show through simulation results that compared to the existing schemes, the proposed design can achieve SNR gains of up to 2 dB. We further provide analytic and numerical analyses of complexity and show that our proposed algorithm is computationally efficient as it typically needs only a few tens of iterations to converge.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
HAQIQATNEJAD, Alireza ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Kayhan, Farbod;  University of Surrey > Institute for Communication Systems, Department of Electrical and Electronic Engineering
Shahram, ShahbazPanahi;  University of Ontario Institute of Technology > Faculty of Engineering and Applied Science, Department of Electrical, Computer and Software Engineering
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Finite-Alphabet Symbol-Level Multiuser Precoding for Massive MU-MIMO Downlink
Date de publication/diffusion :
20 septembre 2021
Titre du périodique :
IEEE Transactions on Signal Processing
ISSN :
1053-587X
Maison d'édition :
Institute of Electrical and Electronics Engineers (IEEE), Etats-Unis
Volume/Tome :
69
Pagination :
5595 - 5610
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR11332341 - Enhanced Signal Space Optimization For Satellite Communication Systems, 2016 (01/02/2017-31/01/2020) - Farbod Kayhan
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 06 décembre 2021

Statistiques


Nombre de vues
186 (dont 8 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
9
citations Scopus®
sans auto-citations
9
citations OpenAlex
 
9
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu