Article (Périodiques scientifiques)
SECAT: Quantifying Protein Complex Dynamics across Cell States by Network-Centric Analysis of SEC-SWATH-MS Profiles.
Rosenberger, George; Heusel, Moritz; Bludau, Isabell et al.
2020In Cell Systems, 11 (6), p. 589-607.e8
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
00_FINAL_MS.pdf
Postprint Éditeur (3.67 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
algorithm; data-independent acquisition; differential analysis; machine learning; network; protein complex; protein correlation profiling; protein-protein interaction; proteomics; size-exclusion chromatography
Résumé :
[en] Protein-protein interactions (PPIs) play critical functional and regulatory roles in cellular processes. They are essential for macromolecular complex formation, which in turn constitutes the basis for protein interaction networks that determine the functional state of a cell. We and others have previously shown that chromatographic fractionation of native protein complexes in combination with bottom-up mass spectrometric analysis of consecutive fractions supports the multiplexed characterization and detection of state-specific changes of protein complexes. In this study, we extend co-fractionation and mass spectrometric data analysis to perform quantitative, network-based studies of proteome organization, via the size-exclusion chromatography algorithmic toolkit (SECAT). This framework explicitly accounts for the dynamic nature and rewiring of protein complexes across multiple cell states and samples, thus, elucidating molecular mechanisms that are differentially implemented across different experimental settings. Systematic analysis of multiple datasets shows that SECAT represents a highly scalable and effective methodology to assess condition/state-specific protein-network state. A record of this paper's transparent peer review process is included in the Supplemental Information.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Rosenberger, George
Heusel, Moritz
Bludau, Isabell
Collins, Ben C.
Martelli, Claudia
WILLIAMS, Evan  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Gene Expression and Metabolism
Xue, Peng
Liu, Yansheng
Aebersold, Ruedi
Califano, Andrea
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
SECAT: Quantifying Protein Complex Dynamics across Cell States by Network-Centric Analysis of SEC-SWATH-MS Profiles.
Date de publication/diffusion :
2020
Titre du périodique :
Cell Systems
ISSN :
2405-4712
eISSN :
2405-4720
Maison d'édition :
Elsevier, Riverport Lane, Etats-Unis - Maryland
Volume/Tome :
11
Fascicule/Saison :
6
Pagination :
589-607.e8
Peer reviewed :
Peer reviewed vérifié par ORBi
Commentaire :
Copyright © 2020. Published by Elsevier Inc.
Disponible sur ORBilu :
depuis le 15 septembre 2021

Statistiques


Nombre de vues
99 (dont 0 Unilu)
Nombre de téléchargements
94 (dont 0 Unilu)

citations Scopus®
 
30
citations Scopus®
sans auto-citations
22
OpenCitations
 
14
citations OpenAlex
 
41
citations WoS
 
30

Bibliographie


Publications similaires



Contacter ORBilu