Quantum key distribution; Parameter estimation; Two-universal hashing; Convergence of finite to asymptotic rate
Résumé :
[en] This paper proposes and proves security of a QKD protocol which uses two-universal hashing instead of random sampling to estimate the number of bit flip and phase flip errors. This protocol dramatically outperforms previous QKD protocols for small block sizes. More generally, for the two-universal hashing QKD protocol, the difference between asymptotic and finite key rate decreases with the number $n$ of qubits as $cn^{-1}$, where $c$ depends on the security parameter. For comparison, the same difference decreases no faster than $c'n^{-1/3}$ for an optimized protocol that uses random sampling and has the same asymptotic rate, where $c'$ depends on the security parameter and the error rate.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Applied Security and Information Assurance Group (APSIA)
Disciplines :
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres Sciences informatiques
Auteur, co-auteur :
OSTREV, Dimiter ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > APSIA
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
QKD parameter estimation by two-universal hashing leads to faster convergence to the asymptotic rate
Date de publication/diffusion :
14 septembre 2021
Titre du périodique :
Quantum
eISSN :
2521-327X
Maison d'édition :
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, Autriche
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust Computational Sciences
Projet FnR :
FNR11689058 - Quantum Communication With Deniability, 2017 (01/07/2018-30/06/2021) - Peter Y. A. Ryan
Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K. Wootters. Mixed-state entanglement and quantum error correction. Phys. Rev. A, 54:3824–3851, Nov 1996. URL: https://link.aps.org/doi/10.1103/PhysRevA.54.3824, doi:10.1103/PhysRevA. 54.3824.
Niek J Bouman and Serge Fehr. Sampling in a quantum population, and applications. In Annual Cryptology Conference, pages 724–741. Springer, 2010. doi:10.1007/ 978-3-642-14623-7_39.
Gilles Brassard and Louis Salvail. Secret-key reconciliation by public discussion. In Workshop on the Theory and Application of of Cryptographic Techniques, pages 410–423. Springer, 1993. doi:10.1007/3-540-48285-7_35.
A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum error correction and orthogonal geometry. Phys. Rev. Lett., 78:405–408, Jan 1997. URL: https://link.aps.org/doi/10.1103/PhysRevLett.78.405, doi:10.1103/PhysRevLett.78.405.
A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Phys. Rev. A, 54:1098–1105, Aug 1996. URL: https://link.aps.org/doi/10.1103/PhysRevA.54.1098, doi:10.1103/PhysRevA.54.1098.
J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences, 18(2):143–154, 1979. URL: https://www.sciencedirect.com/science/article/pii/0022000079900448, doi:10.1016/0022-0000(79)90044-8.
Peter Elias. Coding for two noisy channels. In Colin Cherry, editor, Information Theory, 3rd London Symposium, London, England, Sept. 1955. Butterworth’s scientific publications, 1956. URL: https://worldcat.org/en/title/562487502, doi:10.1038/176773a0.
Chi-Hang Fred Fung, Xiongfeng Ma, and H. F. Chau. Practical issues in quantum-key-distribution postprocessing. Physical Review A, 81(1), Jan 2010. URL: http://dx.doi.org/10.1103/PhysRevA.81.012318, doi:10.1103/physreva.81.012318.
Robert G. Gallager. Low-Density Parity-Check Codes. The MIT Press, 09 1963. doi:10. 7551/mitpress/4347.001.0001.
Daniel Gottesman. Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A, 54:1862–1868, Sep 1996. URL: https://link.aps.org/doi/10.1103/PhysRevA.54.1862, doi:10.1103/PhysRevA.54.1862.
M Koashi. Simple security proof of quantum key distribution based on complementarity. New Journal of Physics, 11(4):045018, apr 2009. URL: https://dx.doi.org/10.1088/1367-2630/11/4/045018, doi:10.1088/1367-2630/11/4/045018.
Charles Ci-Wen Lim, Feihu Xu, Jian-Wei Pan, and Artur Ekert. Security analysis of quantum key distribution with small block length and its application to quantum space communications. Physical Review Letters, 126(10), Mar 2021. URL: http://dx.doi.org/10.1103/PhysRevLett.126.100501, doi:10.1103/physrevlett.126.100501.
Hoi-Kwong Lo and H. F. Chau. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 283(5410):2050–2056, mar 1999. URL: https://doi.org/10.1126%2Fscience.283.5410.2050, doi:10.1126/science.283.5410.2050.
Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, jun 2012. URL: https://doi.org/10.1017% 2Fcbo9780511976667, doi:10.1017/cbo9780511976667.
Dimiter Ostrev. Composable, unconditionally secure message authentication without any secret key. In 2019 IEEE International Symposium on Information Theory (ISIT), pages 622–626, 2019. doi:10.1109/ISIT.2019.8849510.
S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden. Advances in quantum cryptography. Adv. Opt. Photon., 12(4):1012–1236, Dec 2020. URL: http://opg.optica.org/aop/abstract.cfm?URI=aop-12-4-1012, doi:10.1364/AOP.361502.
Christopher Portmann. Key recycling in authentication. IEEE Transactions on Information Theory, 60(7):4383–4396, 2014. doi:10.1109/TIT.2014.2317312.
Christopher Portmann and Renato Renner. Cryptographic security of quantum key distribution, 2014. URL: https://arxiv.org/abs/1409.3525, doi:10.48550/ARXIV.1409.3525.
Renato Renner. Security of Quantum Key Distribution. PhD thesis, ETH Zurich, 2005. URL: https://arxiv.org/abs/quant-ph/0512258, doi:10.48550/ARXIV.QUANT-PH/0512258.
Peter W. Shor and John Preskill. Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett., 85:441–444, Jul 2000. URL: https://link.aps.org/doi/10.1103/PhysRevLett.85.441, doi:10.1103/PhysRevLett.85.441.
Andrew Steane. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1954):2551–2577, 1996. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1996.0136, doi:10.1098/rspa.1996.0136.
W. Forrest Stinespring. Positive functions on c*-algebras. Proceedings of the American Mathematical Society, 6(2):211–216, 1955. URL: http://www.jstor.org/stable/2032342,doi:10.2307/2032342.
Marco Tomamichel and Anthony Leverrier. A largely self-contained and complete security proof for quantum key distribution. Quantum, 1:14, Jul 2017. URL: http://dx.doi.org/10.22331/q-2017-07-14-14, doi:10.22331/q-2017-07-14-14.
Marco Tomamichel, Charles Ci Wen Lim, Nicolas Gisin, and Renato Renner. Tight finite-key analysis for quantum cryptography. Nature communications, 3(1):1–6, 2012. doi:10.1038/ ncomms1631.
Mark N. Wegman and J.Lawrence Carter. New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences, 22(3):265–279, 1981. URL: https://www.sciencedirect.com/science/article/pii/0022000081900337,doi:10.1016/0022-0000(81)90033-7.