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Abstract

This paper proposes and proves security of a QKD protocol which uses
two-universal hashing instead of random sampling to estimate the number
of bit flip and phase flip errors. This protocol dramatically outperforms
previous QKD protocols for small block sizes. More generally, for the
two-universal hashing QKD protocol, the difference between asymptotic
and finite key rate decreases with the number n of qubits as cn−1, where
c depends on the security parameter. For comparison, the same differ-
ence decreases no faster than c′n−1/3 for an optimized protocol that uses
random sampling and has the same asymptotic rate, where c′ depends on
the security parameter and the error rate.

1 Introduction

Quantum Key Distribution allows two users, Alice and Bob, to agree on a shared
secret key using an authenticated classical channel and a completely insecure
quantum channel. There are information theoretic security proofs for QKD
protocols (for example [17, 16, 8, 6, 1, 21, 20] among many others). Quan-
tum key distribution has also been realized experimentally and is commercially
available. The rare combination of information theoretic security and practical
achievability has attracted considerable attention to QKD.

A QKD protocol has several important parameters:

1. Block size: the number of pairs of qubits that Alice and Bob receive.
Following [20, Part 1], this paper considers entanglement based protocols
and defines the block size as the number of qubits after sifting.

2. Output size: the number of bits of secret key that the protocol produces.

3. Key rate: the ratio of output size to block size. The higher the key rate is,
the more efficiently the protocol converts the available quantum resource
to a secret key.

4. Security level: the distance of the output from an ideal secret key. The
lower the security level, the better the guarantee that no future evolution
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of the protocol output and adversary registers will be able to distinguish
between the output and an ideal key.

5. Robustness: the amount and type of noise that the protocol can tolerate
without aborting. In particular, the QKD protocol should be able to
tolerate at the very least the imperfections of whatever quantum channel
and entanglement source is used to implement the protocol.

Existing QKD protocols and security proofs exhibit trade-offs between these
parameters: improving the security or robustness of the protocol worsens the
key rate. These trade-offs are particularly severe when the block size is small.
The phenomenon that the key rate of a QKD protocol deteriorates significantly
for small block sizes has been called finite size effect [13, Sections II-C and IX].

The finite size effect has practical consequences in cases when the quantum
phase of the protocol is particularly difficult to implement. As an example,
consider the problem of using QKD between users who are far apart on the
surface of the earth. The Micius satellite experiment [23] tried to solve this
problem by using a satellite to distribute entangled photon pairs to two ground
stations that are 1120km apart. However, sending entangled photon pairs from
space to earth is difficult. In the Micius experiment, several nights of good
weather had to pass until the ground stations accumulated sifted block size
3100. The error rate that the ground stations needed to tolerate was 4.51%.
Reference [9] performed a state-of-the-art security analysis on this data, and
concluded that security levels better than around 10−6 lead to no secret key
at all, while at security level 10−6, only six bits of secret key are extracted.
Several nights, 6 bits of secret key, security level 10−6: this is not enough to
fulfil the promise of QKD for high levels of security, and not enough to justify
the complexity and cost of QKD equipment. Something else is needed.

Where can further improvement be found? Finite key analysis for QKD
protocols of the BBM92 type is already mature. Reference [9] managed to prove
a slightly tighter upper bound on the tail probability for random sampling, and
thus obtain a small improvement over reference [20]. However, this cannot
continue much further: there are also lower bounds on the tail probability for
random sampling.

Can the equipment for transmitting entangled photon pairs from space to
earth be improved by several orders of magnitude? Perhaps, but that appears
not so easy to do, and would involve a major technological advance.

This paper proposes a different path: to consider QKD protocols where Alice
and Bob can apply CNOT gates in addition to single qubit measurements. Later
discussion will make clear how this helps, but for now, focus on the widespread
belief that protocols with single qubit operations are practical, while other QKD
protocols are impractical. It is true that QKD protocols that use the CNOT
gate are not easy to implement with present technology. However, this need
not remain so in the future. Indeed, what is practical or not practical changes
with time. Recall that when the BB84 protocol was published, technology for
even single qubit operations was not available. The BB84 protocol started to
become practical around two-three decades after its publication. Returning now
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to protocols involving the CNOT gate, note that many groups around the world
are working on technologies to store and manipulate qubits, striving for better
fidelity and more qubits. Thus, there is hope that within the next two-three
decades, QKD protocols that use the CNOT gate will also become practical.

In summary, the path of QKD protocols that use the CNOT gate also re-
quires a technological advance. However, referring again to the Micius satellite
example, it appears easier to make a moderate advance in CNOT gates and a
moderate advance in the transmission of entangled photon pairs from space to
earth, rather than to put the entire burden on only one of these approaches.

What kind of QKD protocols become possible if the restriction to single qubit
operations is lifted, and the CNOT gate is allowed? How do they perform in
comparison to protocols with only single qubit operations? This paper presents
one QKD protocol that involves the use of CNOT gates: the two-universal
hashing QKD protocol, and proves its security. The two-universal hashing QKD
protocol is an entanglement based protocol with block size n, that can tolerate
any r bit flip errors and any r phase flip errors, and at the end extract n −
2dnh(r/n) + 2 log2(1/ε) + 5e secret key bits, that are ε close to an ideal secret
key.

For small block sizes, the two-universal hashing QKD protocol dramatically
outperforms protocols of the BBM92 type. To illustrate, consider again the
security analysis developed in the sequence of papers [21, 20, 9] applied to the
Micius satellite example.

1. Fix the tolerated error rate at 4.51%, the security level at 10−6 and the
output size at 6 bits. The BBM92 type protocol with the security proof
developed in [21, 20, 9] requires block size 3100. The two-universal hashing
protocol requires block size 200.

2. Fix the block size at 3100 and fix the error rate at 4.51%. The BBM92
type protocol with the security proof developed in [21, 20, 9] can extract
6 secret key bits with security level 10−6. The two universal hashing
protocol can extract 385 secret key bits with security level 10−80.

The advantage of the two-universal hashing QKD protocol is particularly
noticeable for small block sizes; however, it is not limited to them. For fixed
error rate δ = r/n and fixed security parameter ε, the asymptotic rate of this
protocol is 1−2h(δ), and the deviation of finite from asymptotic rate is between
(4 log2(1/ε)+10)/n and (4 log2(1/ε)+12)/n. By contrast, the deviation of finite
from asymptotic key rate for the BBM92 type protocol with the security proof
[21, 20, 9] is of the form cn−1/3, where c depends on the tolerated error rate
and the security level.

What is different about the two-universal hashing protocol and what causes
the dramatic improvement in performance? How does the use of CNOT gates
help? To start, note that no classical protocol can distinguish between inputs
that are suitable for the extraction of a secret key and inputs that are not suit-
able. The ability to ”detect the presence of an eavesdropper” is a uniquely
quantum feature and is the central insight that makes QKD possible. This is
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the task of parameter estimation. The two-universal hashing protocol performs
parameter estimation differently from previous protocols. Indeed, it seems nat-
ural to expect that in order to perform better the uniquely quantum task of
distinguishing suitable from unsuitable inputs, it is advantageous to allow more
general quantum operations for Alice and Bob.

The next few paragraphs explain the disadvantages of parameter estimation
as performed in QKD protocols with only single qubit operations. For the
purpose of this high level discussion, define parameter estimation as a two party
LOCC protocol which performs a partial measurement on the input state and
outputs a decision: to accept or reject, and outputs a promise on the post-
measurement state in case of acceptance. Parameter estimation protocols can
differ in the class of input states on which they accept, the number of ebits
they consume, the precision of the promise they provide in case of acceptance,
and the probability that parameter estimation accepts but the promise on the
post-measurement state does not hold.

Previous QKD protocols perform parameter estimation by random sampling:
a random subset of npe positions is measured and the outcomes are publicly
compared. If the error rate on these positions is below some threshold δ, then
parameter estimation accepts and outputs the promise that the error rate on
the remaining positions is at most δ + ν, where ν is the gap between observed
and inferred error rate.

A significant advantage of parameter estimation by random sampling is that
it can be implemented with only single qubit operations for Alice and Bob. Un-
fortunately, this is also the only advantage of random sampling. The promise
that the error rate on the remaining positions is at most δ+ν is very weak: npe
ebits have already been sacrificed for parameter estimation, and now further
ebits have to be sacrificed for information reconciliation and privacy amplifi-
cation. The failure probability scales roughly as exp(−4npev

2), which is also
very weak, despite the fact that it involves an exponential function. To see this,
suppose that the target failure probability is e−100 and that the target gap is
ν = 0.01. Then, npe has to be chosen to be 250000, clearly orders of magnitude
more than can be afforded for block sizes around 1000 or 10000.

By contrast, for the two-universal hashing protocol, 2k ebits are sacrificed
for parameter estimation. If the test passes, then Alice and Bob know that
the post-parameter-estimation state is a particular Bell state of n − 2k ebits;
thus, Alice and Bob do not need to sacrifice any further ebits for information
reconciliation and privacy amplification. Moreover, the scaling of the failure
probability for parameter estimation with the number of sacrificed ebits does
not have the ν2 coefficient in front of the number of sacrificed ebits.

To obtain such a parameter estimation protocol, the present paper builds on
a number of previous ideas. The idea that two universal hashing can be used to
estimate the number of errors is partially present in the protocols [21, 6], and
[6] attributes it to the earlier work [10]. In these protocols, the number of errors
in one of the measurement bases is estimated by random sampling, while for
the other basis there is a two-universal hash in the information reconciliation
phase that is used to ensure correctness. This is also related to the observation
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[2, Theorem 6],[16, Section 6.3.2] that two-universal hash functions can be used
to achieve information reconciliation with minimum leakage.

A combination of several ideas leads to the extension of the use of two-
universal hashing from information reconciliation to a full QKD protocol. Specif-
ically, these ideas are: random matrices over the field with two elements are a
two-universal hash family [5], and they are also parity check matrices of classi-
cal linear error-correcting codes. Classical linear codes can be used to construct
quantum CSS codes [4, 18], and CSS codes can be used to design and prove
security of QKD protocols [17]. The present paper also uses a number of tech-
nical lemmas related to the stabilizer formalism [7, 3]. Finally, [1] translates
the guarantees of classical random sampling to the quantum case. This served
as inspiration for the present paper, which translates the guarantees of classical
two-universal hashing to the quantum case.

Another group of related works are those that prove security of classical
privacy amplification by arguing that it corresponds to a virtual phase error
correction, such as [8, 6]. However, note that privacy amplification is a classical
protocol for Alice and Bob. As such, privacy amplification requires a promise
on the input state to operate, and if an unsuitable input is given, it produces
an insecure key. With this in mind, note that the use of virtual phase error
correction to prove security of classical privacy amplification is possible, but is
not strictly necessary: other proofs of security for privacy amplification exist, for
example in [16]. When it comes to the uniquely quantum task of distinguishing
suitable from unsuitable inputs, [8, 6] resort to the same technique as all other
QKD protocols: single qubit operations and random sampling tail bounds. By
contrast, the two-universal hashing QKD protocol takes an input state prepared
by the adversary, correctly identifies whether the state is suitable or not, and
either produces a secure key or aborts. Here, random linear functions and the
stabilizer formalism are used to perform the uniquely quantum task: distinguish
suitable from unsuitable inputs.

The rest of this paper is structured as follows: Section 2 introduces material
that is needed to present and prove the security of the two universal hashing
QKD protocol, including the security and robustness criteria for QKD protocols,
a number of useful lemmas related to the stabilizer formalism, the use of two-
universal hashing to obtain an optimal information reconciliation protocol, and
a number of useful lemmas about random matrices over the field with two
elements. Section 3 presents the two-universal hashing QKD protocol and shows
that it is secure and robust. Section 4 shows that for fixed security level and
tolerated error rate, the finite key rate converges to the asymptotic rate as cn−1

for two-universal hashing and as cn−1/3 for random sampling, where n is the
block size. Section 5 concludes and gives some open problems.

2 Preliminaries

This section presents definitions and results that are used to state and prove
the main result on the security and robustness of the two-universal hashing
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protocol. Subsection 2.1 recalls the standard security criterion for QKD. Then,
subsection 2.2 contains a number of lemmas related to the stabilizer formalism;
these are used during the security proof. Finally, subsection 2.3 contains lemmas
related to two-universal hashing. Subsection 2.3 also discusses an application of
two-universal hashing to approximately compute certain functions from partial
information about the input; this is used during the security proof.

2.1 Security and robustness of quantum key distribution

This section recalls the security and robustness criteria from [16] that ensure
that a the key produced by QKD can be used in any application. See [15] for
a proof of the equivalence of this security criterion and security in the Abstract
Cryptography framework for composable security.

As is common in the QKD literature, this paper assumes that the adversary
Eve is active in the quantum phase of the protocol but remains passive during
the classical phase, i.e. Eve eavesdrops the classical communication but does not
attempt to modify or block it. Under this assumption, an entanglement-based
QKD protocol is a completely positive trace preserving map that transforms
input states ρABE of Alice, Bob and Eve into output states ρ̃WAWBCE , where
WA,WB are registers containing Alice and Bob’s output: a secret key or indi-
cation ⊥ of protocol abort, and where C is a register containing a transcript of
the classical communication between Alice and Bob.

Since registers WA,WB contain classical values, the final state ρ̃WAWBCE

can be decomposed as

ρ̃WAWBCE = |⊥⊥〉〈⊥⊥|WAWB
⊗ρ̃CE(⊥)+

∑
wA,wB

|wAwB〉〈wAwB |WAWB
⊗ρ̃CE(wA, wB)

This decomposition is used to formulate the definition of security:

Definition 1. A QKD protocol is ε secure if for all input states ρABE, the
output state ρ̃WAWBCE is ε-close in trace distance to the corresponding ideal
state

|⊥⊥〉〈⊥⊥|WAWB
⊗ ρ̃CE(⊥) +

∑
w

1

|W |
|ww〉〈ww|WAWB

⊗ (ρ̃CE − ρ̃CE(⊥))

where |W | denotes the size of the secret key space.

Alternatively, ε-security can be further subdivided into requirements for se-
crecy and correctness:

Definition 2. A QKD protocol is ε correct if for all input states ρABE, the
probability

Pr(WA 6= WB) =
∑

wA 6=wB

Tr(ρ̃CE(wA, wB))

that Alice and Bob accept and output different keys is bounded by ε.
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Definition 3. Alice’s key is ε secret if for all input states ρABE, the reduced
output state ρ̃WACE is ε-close in trace distance to the corresponding ideal state

|⊥〉〈⊥|WA
⊗ ρ̃CE(⊥) +

∑
w

1

|W |
|w〉〈w|WA

⊗ (ρ̃CE − ρ̃CE(⊥))

The following lemma establishes the relation between security and correct-
ness plus secrecy:

Lemma 1. If a QKD protocol is ε secure, then it is ε correct and Alice’s key is
ε secret. Conversely, if the protocol is ε correct and Alice’s key is δ secret, then
the protocol is ε+ δ secure.

Proof. The forward direction follows from monotonicity of the trace distance
and its interpretation as distinguishing advantage. The reverse direction follows
by considering the hybrid state

|⊥⊥〉〈⊥⊥|WAWB
⊗ ρ̃CE(⊥) +

∑
w

|ww〉〈ww|WAWB
⊗
∑
w′

ρ̃CE(w,w′)

and the triangle inequality.

Next, note that in the standard definition of QKD security (Definition 1)
the ideal state, beyond being ε close to the real state, satisfies the following
additional conditions:

1. The probabilities of accepting and rejecting are the same for the real and
ideal state.

2. The real and ideal state differ only in the accept case.

3. The sub-normalized reduced density matrix of registers C,E in the accept
case is equal to ρ̃CE − ρ̃CE(⊥) for both the real and the ideal state.

Now, suppose an ideal state is found that is ε close to the real state, but which
does not necessarily satisfy these additional conditions. This suffices to demon-
strate security:

Lemma 2. Suppose that for all input states ρABE, there exist positive σacceptCE

and σrejectCE such that Tr(σacceptCE ) + Tr(σrejectCE ) = 1 and such that the output
state ρ̃WAWBCE is ε-close in trace distance to

|⊥⊥〉〈⊥⊥|WAWB
⊗ σrejectCE +

∑
w

1

|W |
|ww〉〈ww|WAWB

⊗ σacceptCE

Then, the protocol is 2ε secure.

Proof. By assumption,

1

2

(
‖ρ̃CE(⊥)− σrejectCE ‖1 +

∑
wA,wB

∥∥∥∥ρ̃CE(wA, wB)− 1

|W |
1(wA = wB)σacceptCE

∥∥∥∥
1

)
≤ ε
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From the triangle inequality it follows that

1

2

(
‖ρ̃CE(⊥)− σrejectCE ‖1 +

∥∥ρ̃CE − ρ̃CE(⊥)− σacceptCE

∥∥
1

)
≤ ε

The lemma then follows by another application of the triangle inequality.

Finally, note that a protocol that always aborts is secure, but not useful.
For a useful QKD protocol, the probability of acceptance is bounded below by
1−δ for some δ ∈ (0, 1) on a suitable class of input states. In the present paper,
robustness of the two-universal hashing protocol is shown by giving explicit
bounds on the probability of acceptance as a function of the input state.

2.2 The Pauli group and the Bell basis

Denote the Pauli matrices by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
For a row vector u ∈ F1×n

2 , denote

σu1 = σu1
1 ⊗ . . . σ

un
1 , σu3 = σu1

3 ⊗ · · · ⊗ σ
un
3

The Pauli group on n qubits is

Gn = {ωσu1σv3 : ω ∈ {±1,±i}, u, v ∈ F1×n
2 }

Matrix multiplication of elements of Gn can be performed in terms of u, v, ω:

(ωσu1σ
v
3)(ω′σu

′

1 σ
v′

3 ) = ωω′(−1)v·u
′
σu+u

′

1 σv+v
′

3

This also shows that the map F : Gn → F1×2n
2 given by

F(ωσu1σ
v
3) =

(
u v

)
is a group homomorphism.

Any element of the Pauli group squares to either I or −I; any two elements
g, g′ of the Pauli group satisfy

gg′ = (−1)F(g)SF(g′)T g′g

where S ∈ F2n×2n
2 is the matrix with block form

S =

(
0 In
In 0

)
Say that a tuple of elements of the Pauli group

~g =

 g1
...
gm


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is independent if the row vectors F(gi) ∈ F1×2n
2 are linearly independent. Given

such an independent tuple and given any x ∈ Fm2 , it is possible to find g ∈ Gn
such that

∀i, ggi = (−1)xigig

by solving the corresponding linear system of equations over F2.
A tuple of independent commuting self-adjoint elements of the Pauli group

~g = (g1, . . . gm)T defines a projective measurement on its joint eigenspaces.
The measurement outcomes can be indexed by x ∈ Fm2 and the corresponding
projections are given by

P (~g, x) = 2−m
m∏
j=1

(I + (−1)xjgj)

The projections P (~g, x) form a complete set of orthogonal projections. The ele-
ments of the Pauli group map these projections to each other under conjugation,
as can be seen from Lemma 3 below. Therefore, the projections P (~g, x) all have
the same rank 2n−m.

Lemma 3. For all tuples ~g = (g1 . . . gm)T of independent commuting self-
adjoint elements of Gn, for all h ∈ Gn, for all x ∈ Fm2 ,

P (~g, x)h = hP (~g, x+ F(~g)SF(h)T )

where

F(~g) =

F(g1)
...

F(gm)


is the matrix with rows F(g1), . . . ,F(gm).

Proof.

P (~g, x)h = 2−m

 m∏
j=1

(I + (−1)xjgj)

h

= 2−mh

 m∏
j=1

(I + (−1)xj+F(gj)SF(h)T gj)

 = hP (~g, x+ F(~g)SF(h)T )

Now, take a tuple ~g of m independent commuting self-adjoint elements, take
k ≤ m and take a full rank matrix L ∈ Fk×m2 . The matrix L transforms the
tuple ~g to the k-tuple

L~g = L

 g1
...
gm

 =


∏m
j=1 g

L1j

j
...∏m

j=1 g
Lkj

j


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The tuple L~g also consists of independent commuting self-adjoint elements. The
transformation of ~g to L~g satisfies

M(L~g) = (ML)~g

for any ~g, L, M of compatible size. The matrix F(L~g) can be expressed in
terms of the matrix F(~g):

F(L~g) =


F(
∏m
j=1 g

L1j

j )
...

F(
∏m
j=1 g

Lkj

j )

 =


∑m
j=1 L1jF(gj)

...∑m
j=1 LkjF(gj)

 = LF(~g)

The measurement projections of L~g can be expressed in terms of the mea-
surement projections of ~g.

Lemma 4. For all n ≥ m ≥ k ≥ 1, for all tuples ~g of m independent commuting
self-adjoint elements of Gn, for all full rank L ∈ Fk×m2 , for all y ∈ Fk2 ,

P (L~g, y) =
∑

x∈Fm
2 :Lx=y

P (~g, x)

Proof. Take any i ∈ {1, . . . k}, any x ∈ Fm2 such that Lx = y. Then, m∏
j=1

g
Lij

j

P (~g, x) =

 m∏
j=1

g
Lij

j

2−m
m∏
j=1

(I + (−1)xjgj)


= (−1)

∑m
j=1 LijxjP (~g, x) = (−1)yiP (~g, x)

Then, for any x ∈ Fm2 such that Lx = y, P (L~g, y)P (~g, x) = P (~g, x) holds. Since
{P (~g, x) : Lx = y} is a collection of 2m−k orthogonal projections of rank 2n−m

and since P (L~g, y) has rank 2n−k, the lemma follows.

The maximally entangled state in C2n ⊗ C2n is

|ψ〉 = 2−n/2
∑
z∈Fn

2

|zz〉

The collection
|ψαβ〉 = I ⊗ σα

T

1 σβ
T

3 |ψ〉, α, β ∈ Fn2
is the Bell basis of C2n ⊗ C2n .

First, the maximally entangled state has the properties:

Lemma 5. For all matrices M ∈ C2n×2n , M ⊗ I|ψ〉 = I ⊗MT |ψ〉 and 〈ψ|I ⊗
M |ψ〉 = 2−nTr(M).

Proof. Follows by expanding M in the computational basis.

Pauli group measurements acting on Bell basis states satisfy the following:
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Lemma 6. For all tuples ~g of independent self-adjoint commuting elements
of Gn such that the associated projections P (~g, x) have only real entries when
expressed as matrices in the computational basis, for all α, β ∈ Fn2 , for all x, y ∈
Fm2 ,

(P (~g, x)⊗ P (~g, y))|ψαβ〉 = 1

(
x = y + F(~g)S

(
α
β

))
P (~g, x)⊗ I|ψαβ〉

where for an expression that takes the values true or false, 1(expression) takes
the corresponding values 1 or 0.

Proof. Follows from Lemma 3 and the relation M ⊗ I|ψ〉 = I ⊗MT |ψ〉

The QKD security proof also uses the following lemma. It gives two equiva-
lent expressions for the projection on the subspace of C2n⊗C2n that corresponds
to a specific pattern of bit flip errors or a specific pattern of phase flip errors.

Lemma 7. For all n, for all α, β ∈ Fn2 ,∑
β′∈Fn

2

|ψαβ′〉〈ψαβ′ | =
∑
zA∈Fn

2

|zA, zA + α〉〈zA, zA + α|

∑
α′∈Fn

2

|ψα′β〉〈ψα′β | =
∑
xA∈Fn

2

H⊗2n|xA, xA + β〉〈xA, xA + β|H⊗2n

Proof. Let e1, . . . en denote the standard basis of F1×n
2 . For i ∈ {1, 3} and

R ∈ {A,B}, let ~σR3 denote the tuple σe1i , . . . σ
en
i acting on register R, and let

~σABi denote the tuple σe1i ⊗ σ
e1
i , . . . , σ

en
i ⊗ σ

en
i . Note that for all α, β,

|αβ〉〈αβ|AB = P

((
~σA3
~σB3

)
,

(
α
β

))
; |ψαβ〉〈ψαβ | = P

((
~σAB3

~σAB1

)
,

(
α
β

))
The first relation of Lemma 7 now follows from(

I I
)(~σA3

~σB3

)
=
(
I 0

)(~σAB3

~σAB1

)
and Lemma 4. The second relation follows similarly.

2.3 Approximately computing certain functions from only
a two-universal hash of the input

Let F2 denote the field with two elements and Fn2 the n-dimensional vector space
over this field. Take any subset S ⊂ Fn2 . Consider the function fS : Fn2 → S∪{⊥}
given by

fS(α) =

{
α if α ∈ S
⊥ otherwise

If α specifies errors, then fS computes whether α belongs to a set S of accept-
able errors, if so computes the entire string α, and otherwise outputs an error
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message. It is very convenient to have functions of this form when constructing
QKD protocols and security proofs.

It turns out that it is possible to approximately compute fS(α) given only
a two universal hash of the input. Recall [5, 22]:

Definition 4. A family of functions H from finite set X to finite set Y is
two-universal with collision probability at most ε if for all x 6= x′ ∈ X,

Pr
h←H

(h(x) = h(x′)) ≤ ε

where the probability is taken over h chosen uniformly from H. If no explicit
value is specified for the collision probability bound, then the default value ε =
1/|Y| is taken.

Now, let H be a two-universal family from Fn2 to some finite set Y with
collision probability bound ε. Let S = {s1, . . . , sm}. Consider the function
gS : H×Y → S ∪ {⊥} given by the deterministic algorithm:

1. On input h, y,

2. For i = 1, . . . ,m, if h(si) = y, output si and stop.

3. Output ⊥.

Then:

Theorem 1. For all n ∈ N, for all ε, for all two-universal families H : Fn2 → Y
with collision probability bound ε, for all subsets S ⊂ Fn2 , for all α ∈ Fn2 ,

Pr
h←H

(fS(α) 6= gS(h, h(α))) ≤ ε|S|

Proof. The event
fS(α) 6= gS(h, h(α))

implies the event
∃s ∈ S\{α} : h(s) = h(α)

The union bound and Definition 4 give

Pr
h←H

(fS(α) 6= gS(h, h(α))) ≤ ε|S|

The remainder of this section specializes Theorem 1 to the case that the
family H is a family of matrices over F2, and the set S is a Hamming Ball.

First, consider the following useful lemmas about random matrices over the
field with two elements. Let Fn×k2 to denote the space of n by k matrices over
F2.

Recall a property of random linear functions that was observed in [5]:

12



Lemma 8. Let L be uniformly random in Fk×n2 , and take any fixed x ∈ Fn2−{0}.
Then, PrL(Lx = 0) = 2−k.

Proof. Take i such that xi = 1. Then, Lx = Li + L−ix−i, where Li is the
i-th column of L and where L−i, x−i are formed from L, x by omitting the i-th
column and i-th entry respectively. Now, Li is uniform over Fk2 and independent
from L−i, so Lx is also uniform over Fk2 .

Thus, for all y 6= z ∈ Fn2 , PrL(Ly = Lz) = 2−k, so random linear functions
are two-universal.

Later on, it will be more convenient to select matrices not from all of Fk×n2 ,
but from the subset consisting of those matrices of rank k. This subset also
satisfies the two-universal condition, as the following two lemmas show.

Lemma 9. For all integers n ≥ k ≥ 1, the number of rank k matrices in Fk×n2

is
∏k
i=1(2n − 2i−1)

Proof. Given i−1 linearly independent rows, there are 2n−2i−1 ways to choose
the i-th row outside their span.

Lemma 10. Take k ≤ n, let L be a uniformly random rank k matrix in Fk×n2

and take any x ∈ Fn2 − {0}. Then PrL(Lx = 0) = 2n−k−1
2n−1 < 2−k

Proof. Take invertible M ∈ Fn×n2 such that Mx = (1, 0, . . . , 0)T . Then Pr(Lx =
0) = Pr(LM−1Mx = 0). Now, find the probability that the first column of
LM−1 is zero. Note that LM−1 is also uniformly distributed over the rank k
matrices in Fk×n2 , so the probability its first column is zero is the number of

rank k matrices in Fk×(n−1)2 divided by the number of rank k matrices in Fk×n2 .
Lemma 9 implies:

Pr(LM−1Mx = 0) =

∏k
i=1(2n−1 − 2i−1)∏k
i=1(2n − 2i−1)

=
2n−k − 1

2n − 1
< 2−k

completing the proof of Lemma 10.

Interestingly, the collision probability bound ε = 2n−k−1
2n−1 achieved by the full

rank matrices is the lowest possible for a two-universal family Fn2 → Fk2 . This
follows from a slight strengthening of [5, Proposition 1]:

Lemma 11. For every family H (not necessarily two-universal) of functions
from finite set X to finite set Y, there exist x 6= x′ ∈ X such that

Pr
h←H

(h(x) = h(x′)) ≥
|X|
|Y| − 1

|X| − 1

Proof. Follow the same proof as [5] until the point they apply the pigeonhole
principle. At that point, observe that the number of non-zero terms in the sum
is not only less than |X|2, as they say there, but is in fact at most |X|(|X| − 1).

13



In more detail, for h ∈ H, x, x′ ∈ X, define

δh(x, x′) =

{
1 if x 6= x′ ∧ h(x) = h(x′)

0 otherwise

For every h ∈ H partition X = ∪y∈Yh−1(y) then observe that

∑
x,x′∈X

δh(x, x′) =
∑
y∈Y

|h−1(y)|(|h−1(y)| − 1) ≥ |X|
2

|Y|
− |X|

by the quadratic mean-arithmetic mean inequality. Now, sum over h ∈ H:∑
h∈H

∑
x,x′∈X

δh(x, x′) =
∑

x,x′∈X

∑
h∈H

δh(x, x′) ≥ |H|( |X|
2

|Y|
− |X|)

Now,
∑
h∈H δh(x, x′) is non-zero only when x 6= x′. Then, there exist x 6= x′

such that ∑
h∈H

δh(x, x′) ≥ |H|
|X|
|Y| − 1

|X| − 1

Later results will also use the fact that a row submatrix of a random invert-
ible matrix has the uniform distribution over full rank matrices:

Lemma 12. Take any integers n ≥ k ≥ 1, and any S ⊂ {1, . . . , n} of size
k. Let L be uniformly distributed over invertible matrices in Fn×n2 . Let LS
denote the matrix formed by rows of L with indices in S. Then, LS is uniformly
distributed over full rank matrices in Fk×n2 .

Proof. Pick any fixed full rank Λ ∈ Fk×n2 . Compute Pr(LS = Λ) as the number

of ways to choose the remaining rows of L, which is
∏n−k
i=1 (2n− 2k+i−1) divided

by the number of invertible matrices in Fn×n2 , which is
∏n
i=1(2n − 2i−1). Thus,

Pr(LS = Λ) =

∏n−k
i=1 (2n − 2k+i−1)∏n
i=1(2n − 2i−1)

=
1∏k

i=1(2n − 2i−1)

Thus, LS is uniform over the full rank matrices in Fk×n2 .

Applying Theorem 1 when the set S is a Hamming ball requires a bound on
the size of Hamming balls. For x, y ∈ Fn2 , let dH(x, y) = |{i : xi 6= yi}| denote
the Hamming distance between them. Let Bn(x, r) denote the Hamming ball
of radius r around x. Then:

Lemma 13. For all n, r ∈ N such that 2r ≤ n, for all x ∈ Fn2 , |Bn(x, r)| <
2nh(r/n)
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Proof.

|Bn(x, r)|2−nh(r/n) =

r∑
i=0

(
n

i

)( r
n

)r (n− r
n

)n−r
≤

r∑
i=0

(
n

i

)( r
n

)i(n− r
n

)n−i
<

n∑
i=0

(
n

i

)( r
n

)i(n− r
n

)n−i
= 1

From Theorem 1, Lemma 10 and Lemma 13 deduce:

Corollary 1. For all n, k, r ∈ N with 2r ≤ n and k ≤ n, for all α ∈ Fn2 ,

Pr
L

(fBn(0,r)(α) 6= gBn(0,r)(L,Lα)) < 2−k+nh(r/n)

where L is chosen uniformly from the full rank matrices in Fk×n2 .

3 The two-universal hashing QKD protocol and
its security

Consider the following family π(n, k, r) of entanglement-based QKD protocols,
parameterized by n, k, r ∈ N. The interpretation of the parameters is the fol-
lowing: n is the number of qubits that each of Alice and Bob receive, k is the
size of each of their syndrome measurements and n − 2k is the size of their
output secret key, and r is the maximum number of bit flip or phase flip errors
on which the protocol does not abort. The protocols output a secret key with
security guarantees when 2nh(r/n) < 2k < n.

It will be clear throughout that the size of the two syndrome measurements
can vary independently, and so can the maximum number of tolerated bit flip
and phase flip errors, but that would lead to overly complex notation, with five
parameters n, k, k′, r, r′, so it is not pursued explicitly below.

1. Alice and Bob each receive an n qubit state from Eve, and they inform
each other that the states have been received.

2. Alice and Bob publicly choose a random invertible L ∈ Fn×n2 . Let L1, L2, L3

be the matrices formed by the first k rows, the second k rows, and the last
n − 2k rows of L. Let M = (L−1)T , and let M1,M2,M3 be the matrices
formed by the first k, second k, and last n−2k rows of M . L1, M2 are the
parity check matrices of a CSS code. L3,M3 contain information about
the logical Z and X operators on the codespace.

3. Alice applies the isometry
∑
z |z, L1z〉AU ′A〈z|A and Bob applies the isom-

etry
∑
z |z, L1z〉BU ′B 〈z|B . This can be done by preparing k ancilla qubits

in state 0 and applying a CNOT gate for each entry L1(i, j) that equals
1.
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4. Alice and Bob measure all qubits in registers A,B in the |+〉, |−〉 basis,
obtaining outcomes xA, xB . Alice and Bob measure all qubits in registers
U ′A, U

′
B in the computational basis, obtaining outcomes uA, uB .

5. Alice and Bob compute vA = M2xA, vB = M2xb, wA = M3xA, wB =
M3xB .

6. Alice and Bob discard registers A,B,U ′A, U
′
B .

7. Alice and Bob discard xA, xB , keeping only vA, vB , wA, wB . Thus, in
effect, Alice and Bob erase M1xA,M1xB . Note that the post measurement
states in registers A,B, as well as xA, xB have to be discarded in such a
way that Eve cannot get them.

8. Alice and Bob announce uA, uB , vA, vB . Alice and Bob compute s =
gBn(0,r)(L1, uA + uB) and t = gBn(0,r)(M2, vA + vB).

9. If both of these are not ⊥, then Alice takes wA to be the output secret
key, and Bob takes wB +M3t to be the output secret key.

As is usual in the literature on QKD, the protocol assumes that classical com-
munication takes place over an authenticated channel. Unconditionally secure
message authentication with composable security in the Abstract Cryptography
framework can be obtained from a short secret key [14], or using an advantage
in channel noise [12].

If it is desired that the classical communication is minimized, then the fol-
lowing exchange of messages suffices: Bob confirms to Alice that he has received
the qubits, Alice sends to Bob L, uA, vA, Bob informs Alice whether both of s, t
are not ⊥. However, the initial formulation above better emphasizes the sym-
metry of the protocol, and makes clear that it is not important to keep the
values uB , vB , s, t secret.

The following theorem establishes the security and robustness of the proto-
cols π(n, k, r).

Theorem 2. Take any n, k, r ∈ N such that 2nh(r/n) < 2k < n. Then, the
protocol π(n, k, r) is 2−k/2+nh(r/n)/2+5/2 secure.

Moreover, for any input state ρAB, the probability that π(n, k, r) accepts on
input ρAB is 2−k/2+nh(r/n)/2+3/2 close to Tr(Πn,rρABΠn,r), where Πn,r is the
projection on the subspace of systems AB spanned by the Bell states with at
most r bit flip and at most r phase flip errors.

3.1 Proof of Theorem 2

The main idea of the proof of Theorem 2 is that the real values gBn(0,r)(L1, uA+
uB) and gBn(0,r)(M2, vA + vB) computed during the protocol can be replaced
by the corresponding ideal values fBn(0,r)(α), fBn(0,r)(β). From now on, use
shorthand notation and skip the subscript Bn(0, r), thus writing f for fBn(0,r)

and g for gBn(0,r).
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The steps of the proof of Theorem 2 are the propositions below. Start by
writing the action of the protocol as an isometry followed by a partial trace.

Proposition 1. Let Ereal be the completely positive trace preserving transfor-
mation applied by the first eight steps of the protocol. Then, for all input states
ρABE to the protocol, the output state Ereal(ρABE) of the classical registers
L, UA, UB , VA, VB ,WA,WB , S, T and the quantum register of Eve equals

TrABL′S′T ′U ′AU
′
BV
′
AV
′
BW

′
AW

′
B
WVrealUreal (ρ⊗ |L〉〈L|)U†realV

†
realW

†

where
|L〉 =

∑
L

√
pL|LL〉LL′

is a purification of the choice of random matrix L, where

UReal =
∑

L,zA,zB

|L〉〈L|L ⊗ |zAzB〉〈zAzB |AB

⊗|L1zA, L1zA, L1zB , L1zB , g(L1, L1(zA+zB)), g(L1, L1(zA+zB))〉UAU ′AUBU ′BSS
′

is an isometry that captures the measurement through which Alice and Bob ob-
tain the values uA = L1zA and uB = L1zB as well as the subsequent computation
of the value s = g(L1, L1(zA + zB)), where

VReal =
∑

L,xA,xB

|L〉〈L|L ⊗
(
H⊗2n|xAxB〉〈xAxB |H⊗2n

)
AB

⊗|M2xA,M2xA,M2xB ,M2xB , g(M2,M2(xA+xB)), g(M2,M2(xA+xB))〉VAV ′AVBV ′BTT
′

is an isometry that captures the measurement through which Alice and Bob ob-
tain the values vA = M2xA and vB = M2xB as well as the subsequent compu-
tation of the value t = g(M2,M2(xA + xB)) and where

W =
∑

L,xA,xB

|L〉〈L|L ⊗
(
H⊗2n|xAxB〉〈xAxB |H⊗2n

)
AB

⊗ |M3xA,M3xA,M3xB ,M3xB〉WAW ′AWBW ′B

is an isometry that captures the measurement through which Alice and Bob ob-
tain the values wA = M3xA and wB = M3xB.

Proof. Recall the Stinespring dilation theorem [19]. Systematically express each
step of the protocol as an isometry followed by a partial trace.

The step in which Alice and Bob choose the random matrix L can be ex-
pressed as preparing the purification |L〉LL′ and then taking TrL′ .

The steps in which Alice and Bob apply the isometry∑
zA,zB

|zA, zB , L1zA, L1zB〉ABU ′AU ′B 〈zA, zB |AB
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then measure registers U ′A, U
′
B in the computational basis, discarding the post-

measurement state and keeping only the outcome, then compute the value s can
be expressed by the isometry Ureal followed by TrS′U ′AU ′B .

The steps in which Alice and Bob measure the qubits in A,B in the |+〉, |−〉
basis obtaining xA, xB , then compute vA, vB , wA, wB , t, then discard the post-
measurement state of the qubits in A,B and the outcomes xA, xB can be ex-
pressed by the product of isometries WVreal followed by TrABT ′V ′AV ′BW ′AW ′B .

Finally, note that all the partial trace operations can be commuted to the
end.

Next, note that Ureal can be approximated by an ideal isometry followed by
a simulator isometry.

Proposition 2. Let

Uideal =
∑
α,β

|ψαβ〉〈ψαβ |AB ⊗ |f(α), f(α)〉SS′

This ideal isometry computes whether the number of bit flip errors is acceptable
and if so it computes the entire string of bit flip error positions.

Let

Usimulator =
∑

L,zA,zB

|L〉〈L|L⊗|zAzB〉〈zAzB |AB⊗|L1zA, L1zA, L1zB , L1zB〉UAU ′AUBU ′B

This isometry captures the measurement through which Alice and Bob obtain
the values uA = L1zA and uB = L1zB.

Then: (
〈L|U†idealU

†
simulator

)
(Ureal|L〉) ≥ (1− 2−k+nh(r/n))IAB

Proof. Simplify:

U†simulatorUreal =
∑

L,zA,zB

|L〉〈L|L ⊗ |zAzB〉〈zAzB |AB

⊗ |g(L1, L1(zA + zB)), g(L1, L1(zA + zB))〉SS′

Therefore,(
〈L|U†idealU

†
simulator

)
(Ureal|L〉)

=
∑

L,zA,zB ,α,β

pL|ψαβ〉〈ψαβ |AB |zAzB〉〈zAzB |AB〈f(α)|g(L1, L1(zA + zB))〉S
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Now, apply Lemma 7:

∑
L,zA,zB ,α

pL

∑
β

|ψαβ〉〈ψαβ |AB

 |zAzB〉〈zAzB |AB〈f(α)|g(L1, L1(zA+zB))〉S

=
∑

L,zA,zB ,α,z′A

pL|z′A, z′A+α〉〈z′A, z′A+α|AB |zAzB〉〈zAzB |AB〈f(α)|g(L1, L1(zA+zB))〉S

=
∑
zA,zB

|zAzB〉〈zAzB |AB
∑
L

pL〈f(zA + zB)|g(L1, L1(zA + zB))〉

=
∑
zA,zB

|zAzB〉〈zAzB |AB Pr
L

(f(zA + zB) = g(L1, L1(zA + zB)))

Now, the marginal distribution of L1 is uniform over the rank k matrices in Fk×n2

because L is selected uniformly among invertible matrices in Fn×n2 (Lemma 12).
Complete the proof of Proposition 2 by applying Corollary 1.

Next, perform the same approximation for Vreal.

Proposition 3. Let

Videal =
∑
α,β

|ψαβ〉〈ψαβ |AB ⊗ |f(β), f(β)〉TT ′

This ideal isometry computes whether the number of phase flip errors is accept-
able and if so it computes the entire string of phase flip error positions.

Let

Vsimulator =
∑

L,xA,xB

|L〉〈L|L ⊗
(
H⊗2n|xAxB〉〈xAxB |H⊗2n

)
AB

⊗ |M2xA,M2xA,M2xB ,M2xB〉VAV ′AVBV ′B

This isometry captures the measurement through which Alice and Bob obtain
the values vA = M2xA and vB = M2xB.

Then: (
〈L|V†idealV

†
simulator

)
(Vreal|L〉) ≥ (1− 2−k+nh(r/n))IAB

Proof. As in the proof of Proposition 2, use Lemma 7 to compute(
〈L|V†idealV

†
simulator

)
(Vreal|L〉)

=
∑
xA,xB

(
H⊗2n|xAxB〉〈xAxB |H⊗2n

)
AB

Pr
L

(f(xA+xB) = g(M2,M2(xA+xB)))

Now, M = (L−1)T is uniformly distributed over invertible matrices in Fn×n2 , so
Lemma 12 and Corollary 1 complete the proof.
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Next, observe that:

Proposition 4. UsimulatorVreal = VrealUsimulator

Proof. Rewrite:

Usimulator =
∑

L,zA,zB

|L〉〈L|L⊗|zAzB〉〈zAzB |AB⊗|L1zA, L1zA, L1zB , L1zB〉UAU ′AUBU ′B

=
∑

L,uA,uB

|L〉〈L|L ⊗ |uA, uA, uB , uB〉UAU ′AUBU ′B

⊗

( ∑
zA:L1zA=uA

|zA〉〈zA|

)
A

⊗

( ∑
zB :L1zB=uB

|zB〉〈zB |

)
B

=
∑

L,uA,uB

|L〉〈L|L⊗|uA, uA, uB , uB〉UAU ′AUBU ′B
⊗P (L1(~σ3), uA)A⊗P (L1(~σ3), uB)B

where the last step uses Lemma 4 and the notation of Section 2.2 for the tuple
~σ3 of single qubit σ3 operations.

Similarly, rewrite

VReal =
∑

L,xA,xB

|L〉〈L|L ⊗
(
H⊗2n|xAxB〉〈xAxB |H⊗2n

)
AB

⊗|M2xA,M2xA,M2xB ,M2xB , g(M2,M2(xA+xB)), g(M2,M2(xA+xB))〉VAV ′AVBV ′BTT
′

=
∑

L,vA,vB

|L〉〈L|L ⊗ P (M2(~σ1), vA)A ⊗ P (M2(~σ1), vB)B

⊗ |vA, vA, vB , vB , g(M2, vA + vB), g(M2, vA + vB〉VAV ′AVBV ′BTT
′

where ~σ1 is the tuple of single qubit σ1 operations.
Proposition 4 now follows by observing that the elements of the two tu-

ples L1(~σ3) and M2(~σ1) commute and therefore for all u, v, the corresponding
projections P (L1(~σ3), u) and P (M2(~σ1), v) also commute.

Next, use propositions 1, 2, 3, 4 to construct an ideal transformation that
approximates Ereal:

Proposition 5. Let Eideal be the transformation that prepares |L〉, then ap-
plies isometries Uideal, Videal, Vsimulator, Usimulator, W, and finally applies
TrABL′S′T ′U ′AU

′
BV
′
AV
′
BW

′
AW

′
B

. Then, the diamond distance of Ereal and Eideal
is at most 2−k/2+nh(r/n)/2+3/2.

Proof. Take any input state ρABE and purify it to |φ〉ABEE′ . From Proposition
2 deduce that the fidelity of VrealUsimulatorUideal|φ〉|L〉 and VrealUreal|φ〉|L〉 is
at least 1 − 2−k+nh(r/n). Using the relation of fidelity and trace distance for
pure states [11, Equation 9.99], the trace distance between these two states is√

1− (1− 2−k+nh(r/n))2 ≤ 2−k/2+nh(r/n)/2+1/2
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Next, from Proposition 4 deduce

VrealUsimulatorUideal|φ〉|L〉 = UsimulatorVrealUideal|φ〉|L〉

Next, from Proposition 3 deduce that the fidelity of UsimulatorVrealUideal|φ〉|L〉
and UsimulatorVsimulatorVidealUideal|φ〉|L〉 is at least 1−2−k+nh(r/n), so the trace
distance between them is at most 2−k/2+nh(r/n)/2+1/2. Finally, from Proposition
1, the triangle inequality and monotonicity of the trace distance deduce that the
trace distance between Ereal(ρ) and Eideal(ρ) is at most 2−k/2+nh(r/n)/2+3/2.

Next, compute the output state of Eideal:

Proposition 6. Take any input state ρABE and purify it to |φ〉ABEE′ . Expand
φ in the Bell basis for Alice and Bob:

|φ〉ABEE′ =
∑

α,β∈Fn
2

|ψαβ〉AB ⊗ |γαβ〉EE′

where |γαβ〉 are vectors in Eve’s space that satisfy∑
α,β∈Fn

2

〈γαβ |γαβ〉 = 1

Then, there exists σrejectLEE′STUAVAWAUBVBWB
that is classical on registers LSTUAVAWAUBVBWB

and such that at least one of ST contains ⊥ and such that

Eideal(|φ〉〈φ|) = σrejectLEE′STUAVAWAUBVBWB

+
∑

L,uA,vA,wA,α,β:α,β∈Bn(0,r)

pL|L〉〈L|L ⊗ |γαβ〉〈γαβ |EE′ ⊗ |α, β〉〈α, β|ST

⊗ 2−n|uA, vA, wA〉〈uA, vA, wA|UAVAWA

⊗|uA +L1α, vA +M2β,wA +M3β〉〈uA +L1α, vA +M2β,wA +M3β|UBVBWB

Proof. Simplify:

VidealUideal =
∑
α,β

|ψαβ〉〈ψαβ | ⊗ |f(α), f(α), f(β), f(β)〉SS′TT ′

Also,

WVsimulatorUsimulator =
∑

L,uA,uB ,vA,vB ,wA,wB

|L〉〈L|L

⊗ P

L1~σ3
M2~σ1
M3~σ1

 ,

uAvA
wA


A

⊗ P

L1~σ3
M2~σ1
M3~σ1

 ,

uBvB
wB


B

⊗|uA, uA, uB , uB , vA, vA, vB , vB , wA, wA, wB , wB〉UAU ′AUBU ′BVAV ′AVBV ′BWAW ′AWBW ′B
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using the notation of section 2.2, the observation that the elements of the three
tuples L1~σ3,M2~σ1,M3~σ1 are independent and commute, and Lemma 4.

Next, use Lemma 6 to deduce that

WVsimulatorUsimulatorVidealUideal|φ〉|L〉

=
∑

L,uA,vA,wA,α,β

√
pL|L,L〉LL′ ⊗ P

L1~σ3
M2 ~σ1
M3~σ1

 ,

uAvA
wA


A

|ψαβ〉AB ⊗ |γαβ〉EE′

⊗ |uA, uA, uA + L1α, uA + L1α〉UAU ′AUBU ′B

⊗ |vA, vA, vA +M2β, vA +M2β〉VAV ′AVBV ′B

⊗ |wA, wA, wA +M3β,wA +M3β〉WAW ′AWBW ′B

⊗ |f(α), f(α), f(β), f(β)〉SS′TT ′

Next, break this up into a sum of two sub-normalized vectors |τaccept〉 and
|τreject〉, where |τaccept〉 contains those terms of the sum with α, β ∈ Bn(0, r) and
|τreject〉 contains all other terms of the sum. Note that TrS′T ′ |τaccept〉〈τreject| =
0 and deduce

E ideal(|φ〉〈φ|) = TrABL′S′T ′U ′AU
′
BV
′
AV
′
BW

′
AW

′
B
|τaccept〉〈τaccept|

+ TrABL′S′T ′U ′AU
′
BV
′
AV
′
BW

′
AW

′
B
|τreject〉〈τreject|

Take

σrejectLEE′STUAVAWAUBVBWB
= TrABL′S′T ′U ′AU

′
BV
′
AV
′
BW

′
AW

′
B
|τreject〉〈τreject|

Finally, simplify and use Lemma 5 to deduce that

TrABL′S′T ′U ′AU
′
BV
′
AV
′
BW

′
AW

′
B
|τaccept〉〈τaccept|

=
∑

L,uA,vA,wA,α,β:α,β∈Bn(0,r)

pL|L〉〈L|L

⊗ |γαβ〉〈γαβ |EE′

〈ψαβ |P
L1~σ3

M2 ~σ1
M3~σ1

 ,

uAvA
wA


A

|ψαβ〉


⊗ |uA, vA, wA〉〈uA, vA, wA|UAVAWA

⊗ |uA + L1α, vA +M2β,wA +M3β〉〈uA + L1α, vA +M2β,wA +M3β|UBVBWB

⊗ |α, β〉〈α, β|ST
=

∑
L,uA,vA,wA,α,β:α,β∈Bn(0,r)

pL|L〉〈L|L ⊗ |γαβ〉〈γαβ |EE′ ⊗ |α, β〉〈α, β|ST

⊗ 2−n|uA, vA, wA〉〈uA, vA, wA|UAVAWA

⊗|uA +L1α, vA +M2β,wA +M3β〉〈uA +L1α, vA +M2β,wA +M3β|UBVBWB

which completes the proof.
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Finally, note that for any input state ρABE , applying the final step of the pro-
tocol (the correction of wB) to Eideal(ρ) produces an ideal state that satisfies the
assumptions of Lemma 2 with ε = 2−k/2+nh(r/n)/2+3/2; therefore the protocol is
2−k/2+nh(r/n)/2+5/2 secure. Moreover, for any input ρABE = TrE′ |φ〉〈φ|ABEE′ ,
the probability that the protocol accepts is within 2−k/2+nh(r/n)/2+3/2 of∑

α,β∈Bn(0,r)

〈γαβ |γαβ〉 = TrΠn,rρABΠn,r

This completes the proof of Theorem 2.

4 Comparison with previous work

The introduction illustrated the advantage of two-universal hashing over ran-
dom sampling using specific examples. This section reveals the general pattern
behind the examples in the introduction. To study the advantage of the two-
universal hashing protocol for all block sizes, fix values for the tolerated error
rate and security level, and consider key rate as a function of block size. How
fast does key rate converge to the asymptotic value as block size goes to infin-
ity? Subsection 4.1 gives the rate of convergence for the two-universal hashing
protocol. Subsection 4.2 gives a bound on the rate of convergence of the random
sampling protocol.

4.1 Key rate of the two-universal hashing protocols π(n, k, r)

Given n qubits per side, the target to tolerate δn bit flip and δn phase flip
errors, and a target security parameter ε, it suffices to choose k = dnh(δ) +
2 log2(1/ε) + 5e. The key rate 1− 2k/n then satisfies:

1− 2h(δ)− 4 log2(1/ε) + 12

n
≤ 1− 2k

n
≤ 1− 2h(δ)− 4 log2(1/ε) + 10

n

Therefore, the rate of convergence of the finite to the asymptotic rate is of the
form cn−1.

4.2 Key rate of the random sampling protocols

The sequence of works [21, 20, 9] develops QKD protocols and security proofs
optimized for the finite key regime. The current evolution of the entanglement-
based protocol can be found in [20, Section 3]; the difference between [9] and
[20] is only in the random sampling tail bound that is used. For comparison
with the present work we take only the case of perfect measurements in the
rectilinear and diagonal basis. A summary of the protocol in this case is as
follows:

1. Eve prepares a state of 2n qubits and sends n to Alice and n to Bob.
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2. Alice and Bob agree on a uniformly random choice of either the rectilinear
or the diagonal basis measurement for each pair of qubits.

3. Alice and Bob select a uniformly random subset of npe positions to serve
for parameter estimation, leaving the remaining nrk = n−npe to serve as
the raw key.

4. Alice and Bob compare their outcomes on the parameter estimation posi-
tions. If the error rate on these positions exceeds a threshold δ, Alice and
Bob abort.

5. Alice sends a syndrome of her raw key to Bob, and a two-universal hash of
her raw key to Bob. Bob uses the syndrome to correct his raw key, and uses
the hash to verify that the correction was successful. For simplicity, take
the combined length of syndrome and hash to be the theoretical minimum
nrkh(δ)− log2(εec), where εec is the desired bound on the probability that
the hash test passes but Bob’s corrected raw key does not match Alice’s.

6. Alice and Bob compress their raw keys to shorter output keys of length
nout using a two-universal family of hash functions.

The security εqkd of these protocols can be written in the form

εqkd = εec + inf
0<ν<1/2−δ

(εpa(ν) + εpe(ν))

where εec is the desired bound on the correctness of the protocol, where

εpa(ν) =
1

2
√
εec

2(−nrk(1−h(δ+ν)−h(δ))+nout)/2

is a bound on the secrecy of the protocol, and where

εpe(ν) = inf
0<ξ<ν

εpe(ν, ξ)

comes from a tail bound for random sampling. The precise form of the function
εpe(ν, ξ) is given in [9, Lemma 2] and satisfies the equation(
εpe(ν, ξ)

2

)2

= exp

(
−2nnpeξ

2

nrk + 1

)
+ exp

(
− 2(n+ 2)(n2rk(ν − ξ)2 − 1)

(n(δ + ξ) + 1)(n(1− δ − ξ) + 1)

)
For the purpose of this section, consider the following lower bound on εpe(ν):

Lemma 14. Suppose nrk ≥ n/2. Then,

εpe(ν) ≥ 2exp(−2npeν
2)

Proof. Take any ξ ∈ (0, ν). Note that

2nnpeξ
2

nrk + 1
≤ 4npeν

2
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and therefore

exp

(
−2nnpeξ

2

nrk + 1

)
≥ exp

(
−4npeν

2
)

The lemma follows.

The following bound holds on the key rate of the random sampling protocols:

Theorem 3. Fix the block size n, the tolerated error rate δ and the security
level

εqkd = εec + inf
0<ν<1/2−δ

(εpa(ν) + εpe(ν))

Then, the key rate nout/n is upper bounded by the larger of (1− 2h(δ))/2 and

(1− 2h(δ))− c1(εqkd, δ)n
−1/3 − c2(εqkd)n

−1

where

c1(εqkd, δ) =
3

25/3
(1− 2h(δ))1/3

(
1− h(δ)

1/2− δ

)2/3(
ln

2

εqkd

)1/3

c2(εqkd) = 3 log2(1/εqkd) + 3 log2(3)− 4

Proof. Take the optimal ν. In case nrk/n < 1/2, then

nout
n
≤ nrk(1− h(δ + ν)− h(δ))

n
≤ 1− 2h(δ)

2

Suppose now that nrk/n ≥ 1/2. Simplify the problem by eliminating εec: note
that

εec + εpa(ν) = εec +
1

2
√
εec

2(−nrk(1−h(δ+ν)−h(δ))+nout)/2

≥ 3

24/3
2(−nrk(1−h(δ+ν)−h(δ))+nout)/3

with equality if and only if

εec =
1

24/3
2(−nrk(1−h(δ+ν)−h(δ))+nout)/3

Use this and Lemma 14 to deduce

3

24/3
2(−nrk(1−h(δ+ν)−h(δ))+nout)/3 + 2exp(−2npeν

2) ≤ εqkd

From this, deduce further:

−nrk(1− h(δ + ν)− h(δ)) + nout ≤ 3 log2 εqkd + 4− 3 log2(3)

−2npeν
2 ≤ ln(εqkd)− ln(2)
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Rewrite the first inequality as

nout ≤ n(1−2h(δ))−npe(1−2h(δ))−nrk(h(δ+ν)−h(δ))+3 log2 εqkd+4−3 log2(3)
(1)

Now, apply the inequality a+ b ≥ 3a1/3(b/2)2/3 to the second and third term:

npe(1− 2h(δ)) + nrk(h(δ + ν)− h(δ))

≥ 3

22/3
n1/3pe (1− 2h(δ))1/3n

2/3
rk (h(δ + ν)− h(δ))2/3

≥ 3

22/3
n1/3pe (1− 2h(δ))1/3 (n/2)

2/3
(h(δ + ν)− h(δ))2/3

Further, use the line through (δ, h(δ)) and (1/2, 1) to obtain

h(δ + ν)− h(δ) ≥ ν 1− h(δ)

1/2− δ

then combine this with npeν
2 ≥ 0.5 ln(2/εqkd) to obtain

n1/3pe (h(δ + ν)− h(δ))2/3 ≥
(

1− h(δ)

1/2− δ

)2/3(
1

2
ln

2

εqkd

)1/3

Thus,

npe(1− 2h(δ)) + nrk(h(δ + ν)− h(δ))

≥ 3

25/3
(1− 2h(δ))1/3

(
1− h(δ)

1/2− δ

)2/3(
ln

2

εqkd

)1/3

n2/3

Combining with (1) proves the Theorem.

5 Conclusion and open problems

The present paper has proposed and proved security of a QKD protocol that
uses two-universal hashing instead of random sampling to perform the uniquely
quantum task of distinguishing suitable from unsuitable inputs. This protocol
dramatically outperforms previous QKD protocols for small block sizes. More
generally, the speed convergence to the asymptotic rate for the two-universal
hashing protocol is cn−1, whereas for an optimized random sampling protocol,
the speed of convergence is no faster than c′n−1/3.

As discussed already in the introduction, random sampling protocols involve
only single qubit preparation and measurement, whereas the two-universal hash-
ing protocol presented here requires Alice and Bob also to be able to store qubits
for a short time while they agree on the matrix L, and to apply CNOT gates.
It appears that the use of two-qubit gates is necessary for the improved per-
formance, but this has not yet been mathematically proven. Can the speed of
convergence cn−1 be achieved using only single qubit operations, or is there
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some fundamental limit that prevents this? Another line of research related to
the distinction between single and two-qubit quantum operations would be to
develop quantum hardware capable of performing QKD protocols involving the
CNOT gate.

Second, the algorithm given in section 2.3 for computing the function gBn(0,r)

is not efficient. This leads to the following open problem: is there a probability
distribution over CSS codes, such that the marginal distributions of the two
parity check matrices satisfy a two-universal hashing condition with some good
collision probability bound, and such that each of the two parity check matrices
has additional structure that allows efficient computation of gBn(0,r) during the
protocol? There is a long history in information theory of approximating the
performance of random codes with brute force decoding by more structured
codes with efficient decoding, so there is reason to hope that the same can be
done in the present case.

Third, the arguments in the present paper are for the case where Alice and
Bob can apply perfect quantum operations. It thus remains an open problem
to generalize the present security proof to the case of imperfect devices.
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