Pas de texte intégral
Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
The Weyl problem for unbounded convex domains in $\HH^3$
SCHLENKER, Jean-Marc
2021
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Résumé :
[en] Let $K\subset \HH^3$ be a convex subset in $\HH^3$ with smooth, strictly convex boundary. The induced metric on $\partial K$ then has curvature $K>-1$. It was proved by Alexandrov that if $K$ is bounded, then it is uniquely determined by the induced metric on the boundary, and any smooth metric with curvature $K>-1$ can be obtained. We propose here an extension of the existence part of this result to unbounded convex domains in $\HH^3$. The induced metric on $\partial K$ is then clearly not sufficient to determine $K$. However one can consider a richer data on the boundary including the ideal boundary of $K$. Specifically, we consider the data composed of the conformal structure on the boundary of $K$ in the Poincar\'e model of $\HH^3$, together with the induced metric on $\partial K$. We show that a wide range of "reasonable" data of this type, satisfying mild curvature conditions, can be realized on the boundary of a convex subset in $\HH^3$. We do not consider here the uniqueness of a convex subset with given boundary data.
Disciplines :
Mathématiques
Auteur, co-auteur :
SCHLENKER, Jean-Marc ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Langue du document :
Anglais
Titre :
The Weyl problem for unbounded convex domains in $\HH^3$
Date de publication/diffusion :
2021
Nombre de pages :
15
Disponible sur ORBilu :
depuis le 07 juin 2021

Statistiques


Nombre de vues
99 (dont 1 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu