[en] We study the total $\alpha$-powered length of the rooted edges in a random minimal directed spanning tree - first introduced in \cite{BR04} - on a Poisson process with intensity $s \ge 1$ on the unit cube $[0,1]^d$ for $d \ge 3$. While a Dickman limit was proved in \cite{PW04} in the case of $d=2$, in dimensions three and higher, \cite{BLP06} showed a Gaussian central limit theorem when $\alpha=1$, with a rate of convergence of the order $(\log s)^{-(d-2)/4} (\log \log s)^{(d+1)/2}$. In this paper, we extend these results and prove a central limit theorem in any dimension $d \ge 3$ for any $\alpha>0$. Moreover, making use of recent results in Stein's method for region-stabilizing functionals, we provide presumably optimal non-asymptotic bounds of the order $(\log s)^{-(d-2)/2}$ on the Wasserstein and the Kolmogorov distances between the distribution of the total $\alpha$-powered length of rooted edges, suitably normalized, and that of a standard Gaussian random
variable.
Disciplines :
Mathématiques
Auteur, co-auteur :
BHATTACHARJEE, Chinmoy ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Gaussian approximation in random minimal directed spanning trees
Date de publication/diffusion :
2021
Titre du périodique :
Random Structures and Algorithms
ISSN :
1042-9832
Maison d'édition :
John Wiley & Sons, Hoboken, Etats-Unis - New Jersey