reductions; distribution of primes; multiplicative order; Chebotarev density theorem
Résumé :
[en] Let K be a number field, and let G be a finitely generated subgroup of K*. Without relying on (GRH) we prove an asymptotic formula for the number of primes \p of K such that the order of (G mod \p) is divisible by a fixed integer. We also provide a rational expression for the natural density of this set. Furthermore, we study the primes \p for which the order is k-free, and those for which the order has a prescribed \ell-adic valuation for finitely many primes \ell. An additional condition on the Frobenius conjugacy class of \p may be considered. In order to establish these results, we prove an unconditional version of the Chebotarev density theorem for Kummer extensions of number fields.
Disciplines :
Mathématiques
Auteur, co-auteur :
SGOBBA, Pietro ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Divisibility conditions on the order of the reductions of algebraic numbers
[1] H. O. Abdullah, A. A. Mustafa, and F. Pappalardi, Divisibility of reduction in groups of rational numbers II, Int. J. Number Theory 19 (2023), no. 2, 247—260, DOI 10.1142/S1793042123500124. MR4547450
[2] C. Debry and A. Perucca, Reductions of algebraic integers, J. Number Theory 167 (2016), 259-283, DOI 10.1016/j.jnt.2016.03.001. MR3504046
[3] O. Jarviniemi, A. Perucca, P. Sgobba, Unified treatment of Artin-type problems II, preprint, submitted for publication (2022), arXiv:2211.15614.
[4] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: L-Functions and Galois Properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 409-464. MR0447191
[5] H. W. Lenstra Jr., P. Stevenhagen, and P. Moree, Character sums for primitive root densities, Math. Proc. Cambridge Philos. Soc. 157 (2014), no. 3, 489-511, DOI 10.1017/S0305004114000450. MR3286520
[6] P. Moree, On primes p for which d divides ordp(g), Funct. Approx. Comment. Math. 33 (2005), 85-95, DOI 10.7169/facm/1538186603. MR2274151
[7] P. Moree, Artin’s primitive root conjecture—a survey, Integers 12 (2012), no. 6, 1305-1416, DOI 10.1515/integers-2012-0043. MR3011564
[8] V. K. Murty, Modular forms and the Chebotarev density theorem. II, Analytic Number Theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser., vol. 247, Cambridge Univ. Press, Cambridge, 1997, pp. 287-308, DOI 10.1017/CBO9780511666179.019. MR1694997
[9] J. Neukirch, Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder, DOI 10.1007/978-3-662-03983-0. MR1697859
[10] F. Pappalardi, Square free values of the order function, New York J. Math. 9 (2003), 331-344. MR2028173
[11] F. Pappalardi, Divisibility of reduction in groups of rational numbers, Math. Comp. 84 (2015), no. 291, 385-407, DOI 10.1090/S0025-5718-2014-02872-X. MR3266967
[12] A. Perucca, The order of the reductions of an algebraic integer, J. Number Theory 148 (2015), 121-136, DOI 10.1016/j.jnt.2014.09.022. MR3283171
[13] A. Perucca, Reductions of algebraic integers II, Women in Numbers Europe II, Assoc. Women Math. Ser., vol. 11, Springer, Cham, 2018, pp. 19-33. MR3882703
[14] A. Perucca and P. Sgobba, Kummer theory for number fields and the reductions of algebraic numbers, Int. J. Number Theory 15 (2019), no. 8, 1617-1633, DOI 10.1142/S179304211950091X. MR3994150
[15] A. Perucca and P. Sgobba, Kummer theory for number fields and the reductions of algebraic numbers II, Unif. Distrib. Theory 15 (2020), no. 1, 75-92. MR4221191
[16] A. Perucca, P. Sgobba, and S. Tronto, The degree of Kummer extensions of number fields, Int. J. Number Theory 17 (2021), no. 5, 1091-1110, DOI 10.1142/S1793042121500263. MR4270875
[17] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR137689
[18] SageMath, the Sage Mathematics software system (version 9.2), The Sage Developers, 2021, https://www.sagemath.org.
[19] J.-P. Serre, Quelques applications du theoreme de densite de Chebotarev (French), Inst.Hautes Etudes Sci. Publ. Math. 54 (1981), 323—401. MR644559
[20] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152, DOI 10.1007/BF01405166. MR342472
[21] P. Stevenhagen, The correction factor in Artin’s primitive root conjecture (English, with English and French summaries), J. Theor. Nombres Bordeaux 15 (2003), no. 1, 383-391. Les XXIiemes Journees Arithmetiques (Lille, 2001). MR2019022
[22] J. Thorner and A. Zaman, A unified and improved Chebotarev density theorem, Algebra Number Theory 13 (2019), no. 5, 1039-1068, DOI 10.2140/ant.2019.13.1039. MR3981313
[23] K. Wiertelak, On the density of some sets of primes. IV, Acta Arith. 43 (1984), no. 2, 177-190, DOI 10.4064/aa-43-2-177-190. MR736730
[24] V. Ziegler, On the distribution of the order of number field elements modulo prime ideals, Unif. Distrib. Theory 1 (2006), no. 1, 65-85. MR2314267