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ABSTRACT. Let K be a number field, and let G be a finitely generated subgroup of K×.
Without relying on (GRH) we prove an asymptotic formula for the number of primes p of K
such that the order of (G mod p) is divisible by a fixed integer. We also provide a rational
expression for the natural density of this set. Furthermore, we study the primes p for which the
order is k-free, and those for which the order has a prescribed `-adic valuation for finitely many
primes `. An additional condition on the Frobenius conjugacy class of p may be considered.
In order to establish these results, we prove an unconditional version of the Chebotarev density
theorem for Kummer extensions of number fields.

1. INTRODUCTION

Consider a number field K and let G be a finitely generated subgroup of K×. If p is a prime of
K such that vp(g) = 0 for all g ∈ G, then the reduction (G mod p) is a well-defined subgroup
of k×p , where kp is the residue field at p and vp the p-adic valuation over K. In this paper
we investigate the set consisting of the primes p of K such that the order of (G mod p) is
well-defined and it satisfies some divisibility conditions.

More precisely, denote by ordp(G) the order of (G mod p). In Theorem 1 we prove an asymp-
totic formula for the number of primes p such that m | ordp(G), where m is any given positive
integer. We also consider the primes p such that ordp(G) is k-free, i.e. it is not divisible by
k-th powers (greater than 1), where k > 2. In Theorem 2, relying on the previous result, we
prove an asymptotic formula for the number of primes satisfying this condition. Given a fi-
nite Galois extension of K, an additional condition on the conjugacy class of the Frobenius
automorphisms of the primes lying above p may also be considered. Notice that in this paper
we do not rely on the Generalized Riemann Hypothesis (GRH). In fact, Theorem 10 gives an
unconditional version of the Chebotarev density theorem for cyclotomic-Kummer extensions
of number fields, allowing our proofs to be independent of (GRH).

The mathematical questions addressed in this paper are closely related to Artin’s Conjecture
on primitive roots, and hence are part of an active research area, see Moree’s survey [4]. The
density of rational primes p such that m | ordp(g), where g ∈ Q× \ {±1}, has been recently
studied by Pappalardi [6, 7] (also replacing g with a group of rational numbers), by Moree [3],
and previously by Wiertelak [17]. Our paper provides generalizations of various results by Pap-
palardi and Moree, as described in the next sections. Over a number field, Debry and Perucca
considered the density of the primes p such that ordp(G), where G is a group consisting of al-
gebraic numbers, is not divisible by some fixed prime number (and described how this permits
to treat general divisibility conditions), see [1, 9]. Under the assumption of (GRH), more gen-
eral results over number fields hold, e.g. for ordp(G) satisfying a given modular congruence,
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see [18] by Ziegler and [10] by Perucca and the author. For more references and historical
background we refer to [4, Sect. 9.2 and 9.3].

1.1. Notation. If m > 1 is an integer, then we denote by ζm a primitive m-th root of unity,
and by m∞ the supernatural number

∏
p|m prime p

∞. As customary, µ is the Möbius function.

We fix an algebraic closureK ofK. Form,n > 1 with n | m, we writeKm,n := K(ζm, G
1/n)

for the n-th Kummer extension related to G over K(ζm), i.e. the subextension of K/K(ζm)
obtained by adding the n-th roots of all elements in G. If F/K is a finite Galois extension,
and p is a prime of K which does not ramify in F , then we denote by (p, F/K) the conjugacy
class of the Frobenius elements at the primes of F above p. If S is a set of primes of K, then
we let S(x) be the number of primes in S with norm up to x.

1.2. Outline of the main results. The main result is the following.

Theorem 1. Let G be a finitely generated and torsion-free subgroup of K× of positive rank
r, and let m be a positive integer. Let F/K be a finite Galois extension, and let C be a
conjugacy-stable subset of Gal(F/K). Consider the set of primes of K given by

Pm =

{
p : m | ordp(G),

(
p

F/K

)
⊆ C

}
(where we are tacitly excluding the finitely many primes p that ramify in F or such that vp(g) 6=
0 for some g ∈ G). Then, for 0 < ε < 1 we have

(1) Pm(x) =
x

log x
%C,m +Oε

(
x

(
(log log x)2

log x

)1+ 1−ε
3(r+1)

)
where

(2) %C,m :=
∑
n|m∞

∑
d|m

µ(d)c(mn, dn)

[Fmn,dn : K]

and where, for all positive integers a, b with b | a, we set

(3) c(a, b) := |C ∩Gal(F/F ∩Ka,b)|.
The constant implied by the O-term depends only on ε, F , K, G.

The assumption thatG is torsion-free allows some simplifications in the proofs, and in Remark
16 we explain how to deal with the general case. Also notice that the series in (2) is convergent
by Proposition 15. The coefficient c(a, b) in (3) is always at most |C| 6 [F : K], and it is
equal to 1 if the condition on the Frobenius is trivial.

The main challenge for the generalization of Pappalardi’s method consists in proving a certain
unconditional version of the Chebotarev density theorem for cyclotomic-Kummer extensions
of number fields, as mentioned above. In Section 2 we will argue that this is not difficult if the
base field K is normal over Q. However, for the general case we need an improvement on the
upper-bound of a possible zero of the Dedekind zeta function of Km,n.

Section 3 is devoted to the proof of Theorem 1, whereas in Section 4 we justify that the natural
density %C,m is a positive rational number, and if C = Gal(F/K) (e.g. if F = K) then we
express it in terms of finite sums and products, see Theorem 18.

Sections 5 and 6 are devoted to proving applications of Theorem 1. In Section 5 we apply
Theorem 1 to prove the following result on the primes p of K for which ordp(G) is k-free.
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Theorem 2. Let G be a finitely generated and torsion-free subgroup of K× of positive rank
r, let F/K be a finite Galois extension, and let C be a conjugacy-stable subset of Gal(F/K).
Let k > 2 be an integer and consider the following set of primes of K:

Nk :=
{
p : ordp(G) is k-free,

(
p

F/K

)
⊆ C

}
(where we are tacitly excluding the primes p that ramify in F or such that vp(g) 6= 0 for some
g ∈ G). Then we have

(4) Nk(x) =
x

log x

∑
m>1

µ(m)%C,mk +Ok

(
x

(log x)
1+ k−1

3(r+1)(k+1)

)
,

where %C,mk is as in (2). The set Nk has natural density

βC,k :=
∑
m>1

∑
n|m∞

∑
d|m

µ(m)µ(d)c(nmk, dn)

[Fnmk,dn : K]
,

where c(a, b) is as in (3). The constant implied by the O-term depends only on k, F , K, G.

Notice that the convergence of the series βC,k follows from Proposition 15. In Section 6, from
Theorem 1 we also derive Theorem 21, which concerns the set of primes p for which the `-adic
valuation of ordp(G) has a prescribed value for finitely many prime numbers `.

In Section 7, under (GRH), we derive some improvements on the error terms of formulas
(1) and (4). Finally, in Section 8 we provide several numerical examples for the densities
considered in this paper.

2. CHEBOTAREV DENSITY THEOREM FOR CYCLOTOMIC-KUMMER EXTENSIONS

In this section we prove an effective version of the Chebotarev density theorem for cyclotomic-
Kummer extensions of number fields which is “unconditional”, i.e. it does not rely on (GRH).
Let us first introduce some notation (in addition to the notation of Section 1.1).

2.1. Notation. Given a finite Galois extension L/K of number fields and a conjugacy-stable
subset C of Gal(L/K), we denote by π(L/K,C) the set of primes p of K which are unrami-
fied in L and such that (p, L/K) ⊆ C. Moreover, we say that p is a prime of degree 1 inK if its
ramification index and residue class degree over Q are equal to 1. We denote by π1(L/K,C)
the set of primes in π(L/K,C) which are of degree 1.

Also, dK denotes the absolute discriminant of K, OK the ring of integers of K, and ζK the
Dedekind zeta function of K. For a finitely generated subgroup G of K×, P(G) is the set of
primes p in K such that vp(g) 6= 0 for some g ∈ G (recall that this set is finite).

Also, we use the following standard notation: ϕ is the Euler’s totient function; given m > 1,
τ(m) is the number of positive divisors of m, and rad(m) is the radical of m, i.e. the largest
squarefree integer dividing m; Li(x) =

∫ x
2

dx
log x is the logarithmic integral function.

2.2. Chebotarev density theorem. We start by stating the general result by Lagarias and
Odlyzko, in the improved version by Serre.
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Theorem 3 (Effective “unconditional” Chebotarev density theorem, [2, Theorem 1.2] and [15,
Theorem 2]). Let L/K be a finite Galois extension of number fields. Let C be a conjugacy-
stable subset of Gal(L/K). There exist absolute constants c1, c2 such that, if

(5) log x > c1[L : Q] log2 |dL| ,

then
(6)

π(L/K,C)(x) =
|C|

[L : K]
Li(x) +O

(
|C|

[L : K]
Li(xβ) + |C̃|x exp

(
− c2

√
log x

[L : Q]

))
,

where β is a possible zero of ζL(s), and where |C̃| denotes the number of conjugacy classes
contained in C (if β does not exist, then the term |C|

[L:K] Li(x
β) is deleted).

Remark 4. Since the number of primes of K not of degree 1 with norm up to x can be
estimated by O (

√
x/ log x), see e.g. [18, Lemma 1], the same asymptotic formula (6) holds

for π1(L/K,C)(x).

The difficulty in applying this result to cyclotomic-Kummer extensions consists in estimating
the error term O

(
Li(xβ)

)
, and hence bounding the value of β. As of today, the best known

bound on β is provided by Stark in [16, Proof of Theorem 1’, p.148]. In fact, ifK/Q is normal,
then that bound is good enough for our purpose, see Remark 8. However, for the general case
we need to deduce from Stark’s results some improvement which is suitable for our goal.

2.3. On a possible zero of the Dedekind zeta function.

Lemma 5 ( [16, Lemma 3] ). Let L 6= Q be a number field. The Dedekind zeta function ζL(s)
has at most one zero in the region

(7)
{
s ∈ C : 1− 1

4 log |dL|
6 Re(s) 6 1 and |Im(s)| 6 1

4 log |dL|

}
.

If such a zero exists, then it is real and simple.

Lemma 6. Let L/K be a normal extension of number fields with L 6= Q. If ζL has a real zero
β such that

(8) 1− 1

4(2[K : Q])! · log |dL|
6 β 6 1,

then there is a quadratic number field M inside L such that ζM (β) = 0.

The Lemma says, in particular, that if L has no quadratic subfields, then ζL(s) has no real zero
in the range (8).

Proof. If K = Q, then the statement holds by [16, Lemma 8], hence we suppose K 6= Q. If
ζL(s) has a zero with real part lying in the range (8), then by Lemma 5 it must be real, simple,
and unique in that range. Since L/K is normal, by [16, Theorem 3] there is a subextension
F of L/K, which is either trivial or quadratic over K, such that ζE(β) = 0 for every field
F ⊆ E ⊆ L. Therefore we have that either ζK(β) = 0 or ζF (β) = 0 for some quadratic
extension F/K with F ⊆ L. We conclude by applying [16, Lemma 8] either to K or F ,
noticing that the range of the cited result contains the interval (8). �
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Proposition 7. Let L/K be a Galois extension of number fields with L 6= Q. Then the possible
unique zero β of the Dedekind zeta function ζL(s) in the region (7) is real and simple, and we
have

(9)
1

2
6 β 6 max

{
1− 1

4(2[K : Q])! log |dL|
, 1− 1

c3 |dL|1/[L:Q]

}
,

where c3 > 0 is an effective absolute constant.

Proof. Clearly β > 1/2 as 4 log |dL| > 2. It suffices to show that if β is in the range (8), then
β satisfies (9). We follow the same argument as in [16, Proof of Theorem 1’, p.148]. If L has
no quadratic subfields, then, as we mentioned above, ζL(s) has no real zero in the range (8) by
Lemma 6 and hence (9) is satisfied. If L contains a quadratic field, suppose that ζL(β) = 0
for some β in the range (8). By Lemma 6 there must be a quadratic subfield M of L such
that ζM (β) = 0. By [16, Lemma 11] we must have β < 1 − (c3 |dM |1/2)−1, for an effective
absolute constant c3 > 0. We may conclude because we have |dL| > |dM |[L:Q]/2. �

Remark 8. In fact, if in the proof of Lemma 6 we have ζK(β) = 0, then the lower bound of
(8) may be taken as 1− (4[K : Q]! log |dL|)−1. Moreover, if L is normal over Q or if there is a
tower of normal extensions Q = k0 ⊂ k1 ⊂ · · · ⊂ km = K, then the lower bound of (8) may
be taken to be 1− (4 log |dL|)−1 or 1− (16 log |dL|)−1, respectively (see [16, Lemmas 8 and
10]). Accordingly, the factor 4(2[K : Q])! in (9) can be replaced by 4 or 16 in the respective
cases, by following the same argument of the proof of Proposition 7.

2.4. Chebotarev density theorem for cyclotomic-Kummer extensions.

Proposition 9. Let K be a number field, and let G be a finitely generated and torsion-free
subgroup of K× of positive rank r. Then, for m,n > 1 with n | m, we have

log
∣∣dKm,n

∣∣
[Km,n : Q]

6 log(ϕ(m)mnr) +
∑

p∈P (G)

log p+ log |dK | ,

where P (G) is the finite set of the rational primes lying below the primes in P(G).

Proof. Given a finite extension L/K we write dL/K for the relative discriminant. We have

(10) dKm,n/Q = NK/Q(dKm,n/K) · d[Km,n:K]
K/Q ,

see [5, Ch.III, Corollary 2.10]. By [15, Proposition 5], since Km,n/K is Galois, we have

(11) log
∣∣NK/Q(dKm,n/K)

∣∣ 6 [Km,n : Q]
(
log[Km,n : K] +

∑
p∈P (Km,n/K)

log p
)

where P (Km,n/K) is the set of rational primes p lying below the primes of K that ramify in
Km,n. These prime numbers dividem or lie in P (G), as they lie below the primes p that divide
dKm,n/K , and an estimate for this relative discriminant is [10, Formula (4.7)]:

dKm,n/K |
(
mnr

r∏
i=1

(αiβi)
2
)nrϕ(m)

OK ,

where αi, βi ∈ OK are such that the elements γi := αi/βi for i ∈ {1, . . . , r} form a basis of
G as a free Z-module. Since n | m, we have

(12)
∑

p∈P (Km,n/K)

log p 6 logm+
∑

p∈P (G)

log p .
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We conclude by taking the logarithm of
∣∣dKm,n

∣∣, making use of (10), and by applying the
bounds (11), (12) and [Km,n : K] 6 ϕ(m)nr. �

We are now ready to prove an effective unconditional Chebotarev density theorem for cyclotomic-
Kummer extensions of number fields, extending [7, Lemma 4] to number fields.

Theorem 10. Let F/K be a Galois extension of number fields, and letG be a finitely generated
and torsion-free subgroup of K× of positive rank r. Let C be a conjugacy-stable subset of
Gal(F/K), and for all integers m,n > 1 with n | m, define

(13) Cm,n := {σ ∈ Gal(Fm,n/K) : σ|F ∈ C, σ|Km,n = id} ,
which is a conjugacy-stable subset of Gal(Fm,n/K). Then there exist constants c4 and c5,
which depend only on F and G, such that, uniformly for

(14) m 6 c4

(
log x

(log log x)2

) 1
3(r+1)

,

we have

π(Fm,n/K,Cm,n)(x) =
|Cm,n|

[Fm,n : K]
Li(x) +OF,G

(
x

ec5
6√log x· 3

√
log log x

)
.

Proof. We apply Theorem 3 to Fm,n/K and Cm,n. By Proposition 9 and since [Fm,n : F ] 6
mr+1 we have

[Fm,n : Q] log2
∣∣dFm,n

∣∣ 6 [F : Q]3m3(r+1)
(
logmr+2 + cF,G

)2
�F,G m

3(r+1) log2m,

(cF,G is a constant depending only on F andG). Thus, from (14) we deducem3(r+1) log2m�
log x, hence (5) is satisfied.

We now focus on the error terms of (6). Since β > 1/2 we have Li(xβ) = O(xβ/ log x). We
make use of the two terms in the upper bound on β of Proposition 7 separately. On the one
hand, by Proposition 9 we have∣∣dFm,n

∣∣1/[Fm,n:Q]
6 exp

(
logmr+2 + cF,G

)
�F,G m

r+2,

which yields

xβ

log x
6

x

x1/(c6mr+2) log x
=

x

exp
(

1
c6mr+2 log x+ log log x

) 6 x

exp
(
c5

6
√
log x 3

√
log log x

) ,
(c5, c6 are constants depending only on F and G).

On the other hand, the condition on m gives log
∣∣dFm,n

∣∣ 6 √log x, so that

xβ

log x
6

x

x1/(4(2[K:Q])! log|dFm,n |) log x
6

x

exp
(
c5

6
√
log x 3

√
log log x

) ,
where we used that a3 + b3 > ab for all a, b > 0.

Finally, to bound the last error term in (6) it is enough to notice that√
log x

[Fm,n : Q]
>

√
log x

[F : Q]mr+1
�F

3
√
log x 3

√
log log x .

Collecting all error terms gives the asymptotic formula. �
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3. THE ORDER BEING DIVISIBLE BY A GIVEN INTEGER

In this section we prove Theorem 1. We first set some notation. Recall also the notation
introduced in Sections 1.1 and 2.1.

3.1. Notation. Let F/K be a Galois extension of number fields, C a conjugacy-stable subset
of Gal(F/K), and G a finitely generated and torsion-free subgroup of K×. For m,n > 1 with
n | m we define π1m,n to be the set of primes p of K which are of degree 1, split completely
in Km,n, do not ramify in F , and satisfy (p, F/K) ⊆ C. In other words, we set π1m,n :=

π1(Fm,n/K,Cm,n), where Cm,n is as in (13) (we are fixing K, F , G, and C).

For p /∈ P(G), recall that ordp(G) is the order of (G mod p), and we also denote by indp(G)
the index of (G mod p), namely

indp(G) = [k×p : 〈G mod p〉] = (N p− 1)/ ordp(G).

Given integers m,n > 1, recalling the definition of the supernatural number m∞, we have
(n,m∞) =

∏
`|m prime `

v`(n), where v` is the `-adic valuation.

3.2. Proof of Theorem 1. The proof of Theorem 1 is based on [7, Theorem 1] and [3, Lemma
1]. Recall that if p is a prime of K of degree 1 such that p /∈ P(G), then N p ≡ 1 mod n if
and only if p splits completely in K(ζn), and n | indp(G) if and only if p splits completely in
Kn,n, where n > 1. Hence, we easily deduce that for m,n > 1 with n | m we have

(15) π1m,n =

{
p : p of degree 1, N p ≡ 1 mod m, n | indp(G),

(
p

F/K

)
⊆ C

}
,

see also [18, Lemma 2].

Lemma 11. If Pm is as in Theorem 1, then we have

Pm(x) =
∑
n|m∞

∑
d|m

µ(d)π1mn,dn(x) +O

( √
x

log x

)
.

Proof. The proof is a variation of [3, Proof of Proposition 1]. The O-term estimates the primes
of K which are not of degree 1. Let p ∈ Pm be a prime of degree 1, and let N p = p. Then
we have m | (p− 1) and there is a unique n | m∞ such that p ≡ 1 mod mn, n | indp(G) and
(
indp(G)

n ,m) = 1 (we must have n = (indp(G),m
∞)). Hence we can write

Pm(x) =
∑
n|m∞

Bn(x) +O

( √
x

log x

)
,

where for n | m∞ we set

Bn :=

{
p : p ≡ 1 mod mn, n | indp(G),

( indp(G)
n

,m
)
= 1,

(
p

F/K

)
⊆ C

}
(we are tacitly assuming that the primes in Bn are of degree 1, do not lie in P(G) and do
not ramify in F ). Notice that, p ∈ Bn satisfies m | ordp(G) because of the two conditions
p ≡ 1 mod mn and (indp(G)/n,m) = 1 and the identity ordp(G)· indp(G) = p− 1.
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Next we apply the inclusion-exclusion principle to the condition (indp(G)/n,m) = 1, which
amounts to n | indp(G) and n` - indp(G) for all primes ` | m, so that we obtain

Bn(x) =
∑
d|m

µ(d)

∣∣∣∣{p : p 6 x, p ≡ 1 mod mn, dn | indp(G),
(

p
F/K

)
⊆ C

}∣∣∣∣ .
We conclude by (15) that

�(16) Bn(x) =
∑
d|m

µ(d)π1mn,dn(x) .

Remark 12. Notice that, in the proof of Lemma 11 we have

Bn(x) 6 [K : Q] · |{p 6 x : p ≡ 1 mod mn}| ,

and Bn(x) 6 π(Fmn,n/K,Cmn,n)(x). From this last inequality, identity (16), and by the
Chebotarev density theorem we deduce

0 6
∑
d|m

µ(d) |Cmn,dn|
[Fmn,dn : K]

6
|Cmn,n|

[Fmn,n : K]
6

1

[Kmn,n : K]
.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Notice that, for a, b > 1 with b | a, we have c(a, b) = |Ca,b|, because if
σ ∈ C is the identity on F ∩ Ka,b, then σ can be lifted to a unique element of Ca,b. We are
going to apply Lemma 11 and Theorem 10. For n | m∞ let Bn be as in the proof of Lemma 11,
and recall (16). Set y := c4(log x/(log log x)

2)1/3(r+1), where c4 is the constant of Theorem
10. Thus, we have

Pm(x) =
∑
n|m∞
nm6y

∑
d|m

µ(d)π1mn,dn(x) +O

( ∑
n|m∞
nm>y

Bn(x)

)
+O

( √
x

log x

)

=Li(x)
∑
n|m∞
nm6y

∑
d|m

µ(d)c(mn, dn)

[Fmn,dn : K]
+OF,G

(
τ(m)

m

x · y
ec5

6√log x· 3
√
log log x

)

+O

( ∑
n|m∞
nm>y

Bn(x)

)
+O

( √
x

log x

)
.

In order to estimate the tail of the series in the main term we make use of Remark 12 and obtain

Pm(x) =Li(x)
∑
n|m∞

∑
d|m

µ(d)c(mn, dn)

[Fmn,dn : K]
+O

(
x

log x

∑
n|m∞
mn>y

1

[Kmn,n : K]

)
(17)

+OF,G

(
x · y

ec5
6√log x· 3

√
log log x

)
+O

( ∑
n|m∞
nm>y

Bn(x)

)
.(18)

The first error term in (18) is negligible with respect to the error term in the statement. Let us
estimate the error term in (17). Since [K(ζmn) : K]�K ϕ(mn) and mn/ϕ(mn) = m/ϕ(m)
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(as rad(n) | m), applying [6, Lemma 3.3] for some 0 < ε < 1, we can bound

(19)
∑
n|m∞
mn>y

1

[Kmn,n : K]
�K

∑
n|m∞
nm>y

1

ϕ(mn)
�ε

m

ϕ(m)

1

y1−ε
.

Since m/ϕ(m) = O (log logm), see e.g. [13, Theorem 15], and m 6 x without loss of
generality, we then have

(20)
x

log x

∑
n|m∞
mn>y

1

[Kmn,n : K]
�K,ε

x log log x

y1−ε log x
.

Next we focus on the second error term in (18). In view of Remark 12, and by applying the
Brun-Titchmarsh Theorem and the same estimates as above, for z := (log x)2/(1−ε) we have∑

n|m∞
nm6y

Bn(x)�K

∑
n|m∞

y<nm6z

|{p 6 x : p ≡ 1 mod mn}|+
∑
n|m∞
nm>z

|{k 6 x : mn | k}|

�
∑
n|m∞

y<nm6z

x

ϕ(mn) log(x/mn)
+
∑
n|m∞
nm>z

x

mn
�ε

x log log x

log(x/z)

1

y1−ε
+

x

log2 x
.(21)

Both expressions (20) and (21) are bounded by the error term in the statement. �

3.3. Properties and remarks.

Remark 13. One can see from [6, Proof of Lemma 3.3] that the constant depending on ε
arising in (19) can be taken equal to ∏

p621/ε

prime

1

pε − 1
.

In fact, a slightly stronger error term could be obtained in Theorem 1.

Remark 14. Let m > 1, and ω(m) the number of prime factors of m. One can show that for
T > 1 and 0 < c < 1 we have ∑

k>T
m|k|m∞

1

k
6 (1− c)−ω(m) 1

T c
.

Indeed, by the Mean value theorem we obtain 1− 1/pb > bp−b log p, with 0 < b < 1 and p a
prime number. Thus, from the proof of [6, Lemma 3.3] we have∑

k>T
m|k|m∞

1

k
6

1

m1−cT c

∏
p|m
prime

(
1− 1

p1−c

)−1
6

(1− c)−ω(m)

T c
.

Taking c = 1−1/ log log x and making use of this inequality in the proof of Theorem 1 reduces
the final error term to

OF,K,G

(
x(log log x)ω(m)−1

(
(log log x)2

log x

)1+ 1
3(r+1)

)
.

Notice that an extra factor (log log x)ω(m) is also needed in the formula of [7, Theorem 1].
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Proposition 15. The series %C,m from Theorem 1 is convergent, and for every ε > 0 we have

%C,m = OK,ε

(
1

m1−ε

)
.

Moreover, we also have %C,mk �K,ε 1/m
k−ε for every k > 1.

Notice that the constant implied by the latter estimate is independent of k.

Proof. Applying Remark 12 and the estimate [Kmn : K]�K ϕ(mn) = ϕ(m)n, we have

%C,m 6
∑
n|m∞

1

[Kmn,n : K]
�K

1

ϕ(m)

∑
n|m∞

1

n
=

1

ϕ(m)

∏
p|m prime

p

p− 1
.

We may bound the product by cεm
ε/2, where cε > 0 is a constant depending on ε, so

we conclude by recalling that m/ϕ(m) = Oε(m
ε/2). For the second assertion notice that

mk/ϕ(mk) = m/ϕ(m) = Oε(m
ε/2). �

Remark 16. The assumption that the group G is torsion-free allows some simplifications
throughout the proof of Theorem 1. However, the general case can be treated easily. Let
G′ be a finitely generated subgroup of K× with torsion, and write G′ = G × 〈ζt〉, where
ζt ∈ K×, t > 2, and G ⊆ K× is torsion-free. Then, for all primes p of K of norm large
enough, we have

m | ordp(G′) if and only if
∏

`|m prime
v`(m)>v`(t)

`v`(m) | ordp(G).

Remark 17. Let us consider the expression of the density %C,m for some special cases of C.
If C = Gal(F/K), then the condition on the Frobenius becomes trivial and c(a, b) = [F :
F ∩Ka,b]. Therefore we obtain

%m := %Gal(F/K),m =
∑
n|m∞

∑
d|m

µ(d)

[Kmn,dn : K]
.

If C = {id}, then the condition (p, F/K) = id is equivalent to p splitting completely in F . In
this case c(a, b) = 1, and hence %{id},m equals 1/[F : K] times the density of primes P of F
such that m | ordP(G).
Finally, if F is linearly disjoint over K from Ka,b, then c(a, b) = |C|. Hence, if this holds for
all a, b we obtain %C,m = %m · |C| /[F : K].

Clearly, analogous statements hold for the densities βC,k of Theorem 2 and γC,k,m of Theorem
21.

4. A RATIONAL FORMULA FOR THE DENSITY

As a special case of [11, Corollary 7], the natural density %C,m of the set Pm from Theorem
1 is a positive rational number. In this section we also provide an explicit closed formula for
%C,m when the condition on the Frobenius is trivial (in this case we write %m for %C,m, as in
Remark 17). In the rest of the paper, ` will always represent a prime number (also when not
mentioned explicitly).
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Theorem 18. Let K be a number field and let G be a finitely generated and torsion-free
subgroup of K× of positive rank r. Let m > 1 be an integer and let %m be the natural density
of the set of primes p of K such that m | ordp(G) (where p /∈ P(G)). Then there is an integer
z, which depends only on K and G, such that

(22) %m =
1

ϕ(m)

∏
`|m
`-z

`(`r − 1)

`r+1 − 1
·

∑
g|z

rad(g)|(m,z)|g

∑
h|g

p(g, h)

[Kg,h : K]
,

where we set p(g, h) = 0 if and only if at least one of the following conditions holds:

• there is ` | g, ` - h such that v`(g/(m, z)) > 0,
• there is ` | h such that v`(z/g) > 0 and v`(g/h) /∈ {v`(m), v`(m)− 1},
• there is ` | h such that v`(z/g) = 0 and v`(g/h) > v`(m);

else we define

p(g, h) =
ϕ(g)

h
·

∏
`|h, v`(z/g)>0

v`(g/h)=v`(m)−1

−` ·
∏

`|h, v`(z/g)=0

16v`(g/h)<v`(m)

−(`− 1) ·
∏
`|h

v`(z/h)=0

−`r+1(`− 1)

`r+1 − 1
.

Notice that the formula for %m involves only finite sums and products. Moreover, for a general
number field K and a finitely generated and torsion-free group G ⊆ K×, the integer z is
explicitly described by the results of [12] (see e.g. [12, Theorem 1.2 and its proof]). Also,
notice that for all m such that (m, z) = 1 we have

%m =
rad(m)

ϕ(m)

∏
`|m

`r − 1

`r+1 − 1
.

Proof. By [12, Theorem 1.1] there is an integer z, which depends only on K and G, such that
for n | m we have

[Km,n : K] =
ϕ(m)nr

ϕ((m, z))(n, z)r
· [K(m,z),(n,z) : K] .

Therefore, we have

(23) %m =
∑
n|m∞

∑
d|m

µ(d)

[Kmn,dn : K]
=

1

ϕ(m)

∑
g|z
h|g

ϕ(g)hr

[Kg,h : K]

∑
n|m∞

(mn,z)=g

∑
d|m

(dn,z)=h

µ(d)

nr+1dr
.

First of all, for all n | m∞ we have that rad(mn, z) = rad(m, z), so that we may restrict
the sum on g | z to the divisors such that (m, z) | g and rad(g) = rad((m, z)) both hold.
To simplify the notation, let us denote m` = v`(m), and similarly for z`, g`, h`. Then, by
properties of the multiplicative functions, from (23) we obtain

%m =
1

ϕ(m)
·

∑
g|z

rad(g)|(m,z)|g

∑
h|g

ϕ(g)hr

[Kg,h : K]
·
∏
`|m

p`(g, h)

where for ` | m we define

(24) p`(g, h) :=
∑
s>0

min(m`+s,z`)=g`

∑
e∈{0,1}

min(s+e,z`)=h`

µ(`e)

`s(r+1)`er
.
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If ` | m and ` - z, then the two conditions on the indices are trivial and we have

p`(g, h) =
`(`r − 1)

`r+1 − 1
.

This computation already justifies the first product in (22). Next, we take

p(g, h) := ϕ(g)hr
∏
`|g

p`(g, h),

and compute p`(g, h) depending on the prime factors ` of g (equivalently, of (m, z)).

Case 1: ` | g and ` - h. Since ` - h, the conditions on the indices in (24) hold only for
s = e = 0, so that p`(g, h) = 1 if min(m`, z`) = g`, and p`(g, h) = 0 otherwise.

Case 2: ` | h, and g` < z`. Since 1 6 h` < z`, the conditions on the indices hold only for
s+ e = h`. Therefore, if g` = m`+ h`, then p`(g, h) = 1/`h`(r+1); if g` = m`+ h`− 1, then
p`(g, h) = −`/`h`(r+1); otherwise p`(g, h) = 0.

Case 3: ` | h, and h` < g` = z`. The conditions on the indices hold only for s + e = h` and
m` + s > z` = g`. Therefore, if m` + h` − 1 > z`, then p`(g, h) = −(` − 1)/`h`(r+1); if
m` + h` = z`, then p`(g, h) = 1/`h`(r+1); otherwise p`(g, h) = 0.

Case 4: ` | h and h` = z`. Since h` = g` = z` > 1, the conditions on the indices hold if and
only if s+ e > h`. Therefore, we obtain

p`(g, h) = −
1

`h`(r+1)

`r+1(`− 1)

`r+1 − 1
. �

5. k-FREE ORDER

In this section we prove Theorem 2. The proof relies on ideas from [6, Theorem 1.2] (see
also [7, Remark (8), p.388]).

Proof of Theorem 2. If p is a prime of K with p /∈ P(G), then ordp(G) is k-free if and only
if for every rational prime q we have qk - ordp(G). Therefore, by the inclusion-exclusion
principle we have

Nk(x) =
∑
m>1

µ(m)P1
mk(x) +O

( √
x

log x

)
,

where P1
m denotes the set of all primes in Pm which are of degree 1 (the O-term estimates the

primes not of degree 1). Notice that for P1
m(x) we may take the same asymptotic formula (1)

as for Pm(x). Then, for 0 < a < 1 and z := loga x we have

Nk(x) =
∑
m6z

µ(m)P1
mk(x) +O

(∑
m>z

P1
mk(x)

)
+O

( √
x

log x

)

=
x

log x
βC,k +O

(
x

log x

∑
m>z

%C,mk

)
+O

(∑
m>z

P1
mk(x)

)
(25)

+O

(∑
m6z

x

(
(log log x)2

log x

)1+ 1−ε
3(r+1)

)
+O

( √
x

log x

)
.(26)
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By Proposition 15 we have %C,mk �η 1/m
k−η for every 0 < η < 1. Hence we can bound the

first O-term in (25) by

(27)
x

log x

∑
m>z

1

mk−η = Oη

(
x

(log x)1+a(k−1−η)

)
.

The primes p in P1
mk are such that p := N p ≡ 1 mod mk. Hence the second error term in (25)

is smaller than

[K : Q]

( ∑
z<m6log2 x

∣∣∣{p 6 x : p ≡ 1 mod mk
}∣∣∣+ ∑

m>log2 x

∣∣∣{n 6 x : mk | n
}∣∣∣).

The second sum is bounded by∑
m>log2 x

x

mk
= O

(
x

(log x)2(k−1)

)
,

whereas applying the Brun-Titchmarsh Theorem we can bound the first sum with∑
z<m6log2 x

x

ϕ(mk) log(x/mk)
� x

log x

∑
m>z

1

ϕ(mk)
.

In view of the estimate mk/ϕ(mk) = Oη(m
η) (recall that n/ϕ(n) �η rad(n)η), we deduce

that both sums are bounded by the error term in (27).

Next, we can bound the first error term in (26) by

(28) (log x)a · x
(
(log log x)2

log x

)1+ 1−ε
3(r+1)

6
x(log log x)3

(log x)
1+ 1−ε

3(r+1)
−a
,

and we may choose a = 1−ε
3(r+1)(k−η) , so that (28) can be bounded by (27). With a suitable

choice of ε and η (depending on k), the exponent in the denominator of (27) can be reduced to
1 + k−1

3(r+1)(k+1) . Collecting the errors yields the result. �

Remark 19. In the context of Theorem 2, the case of groups with torsion is straightforward:
if G′ is a finitely generated subgroup of K× with torsion of order t, and G = G′/〈ζt〉, then the
density of the setNk,G′ (i.e.Nk defined for the group G′) is equal to the density ofNk,G if t is
k-free, and it is 0 otherwise.

Next we prove an explicit formula for the density βC,k of Theorem 2 if the condition on the
Frobenius is trivial, and in this case we simply write βk. The formula consists of a rational
factor times a constant expressed by an infinite product.

Corollary 20. Let K be a number field and let G be a finitely generated and torsion-free
subgroup of K× of positive rank r. Let k > 2 and let βk be the natural density of the set of
primes p ofK such that ordp(G) is k-free (where p /∈ P(G)). Then there is an integer z, which
depends only on K and G, such that

(29) βk =
∏
`-z

(
1− `r − 1

(`− 1)(`r+1 − 1)`k−2

)
·

∑
g|z

(rad(g)k,z)|g

∑
h|g

p(g, h)

[Kg,h : K]
,

where we set p(g, h) = 0 if and only if at least one of the following conditions is satisfied:

• there is ` | g, ` - h and v`(g) 6= v`((`
k, z)),

• there is ` | h such that v`(g/h) > k, or v`(z/g) > 0 and v`(g/h) < k − 1;
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else we define p(g, h) to be

g

h rad(g)k
·

∏
`|g,`-h, v`(g/(`

k,z))=0

or `|h,v`(g/h)=k

(−1) ·
∏

`|h, v`(z/g)>0

v`(g/h)=k−1

` ·
∏

`|h, v`(z/g)=0

0<v`(g/h)<k

(`− 1) ·
∏
`|h

v`(z/h)=0

`r+1(`− 1)

`r+1 − 1

Notice that, setting

(30) Ak,r :=
∏
` prime

(
1− `r − 1

(`− 1)(`r+1 − 1)`k−2

)
,

a constant which only depends on the integer k and on the rank r of G, the infinite product in
(29) is equal to

Ak,r ·
∏
`|z

(
1− `r − 1

(`− 1)(`r+1 − 1)`k−2

)−1
.

Proof. Applying [12, Theorem 1.1] as in the proof of Theorem 18 we obtain

βk =
∑
m>1

∑
n|m∞
d|m

µ(m)µ(d)

[Knmk,dn : K]
=
∑
g|z
h|g

ϕ(g)hr

[Kg,h : K]

∑
m>1

∑
n|m∞

(nmk,z)=g

∑
d|m

(dn,z)=h

µ(m)µ(d)

nr+1drϕ(mk)

=
∑
g|z
h|g

ϕ(g)hr

[Kg,h : K]

∏
` prime

p`(g, h)(31)

where for ` - z (and hence ` - g) we have

p`(g, h) = 1− 1

ϕ(`k)

∑
s>0

∑
e∈{0,1}

µ(`e)

`s(r+1)+er
= 1− 1

ϕ(`k)

`(`r − 1)

`r+1 − 1
,

and for ` | z, ` - g we have p`(g, h) = 1, whereas for ` | g, setting z` := v`(z) and similarly
for g`, h`, we have

p`(g, h) = −
1

ϕ(`k)

∑
s>0

min(k+s,z`)=g`

∑
e∈{0,1}

min(s+e,z`)=h`

µ(`e)

`s(r+1)+er
.

We take p(g, h) := ϕ(g)hr
∏
`|g p`(g, h) (and make use of the identity ϕ(g)/ϕ(rad(g)k) =

g/ rad(g)k). Let us compute p`(g, h) depending on the prime ` | g. If g` < min(k, z`), then
p`(g, h) = 0, so that we may restrict the sum in (31) to the divisors g such that (rad(g)k, z) | g.

Case 1: ` - h. The conditions on the indices hold only for s = e = 0. Thus, if g` = min(k, z`),
then p`(g, h) = −1/ϕ(`k), otherwise p`(g, h) = 0.

Case 2: ` | h and h` = g` = z`. The sums reduce to the indices s, e such that s + e > h`
(recall that k > 2). Hence, we have

p`(g, h) =
1

ϕ(`k)`(r+1)h`

`r+1(`− 1)

`r+1 − 1
.

Case 3: ` | h and h` < g` = z`. The conditions on the indices become s + e = h` and
k + s > g`. Hence, we have: p`(g, h) = 0 if g` − h` > k; p`(g, h) = −1/(ϕ(`k)`(r+1)h`) if
g` − h` = k; p`(g, h) = (`− 1)/(ϕ(`k)`(r+1)h`) if g` − h` < k.
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Case 4: ` | h and g` < z`. The conditions on the indices become s+ e = h` and k + s = g`.
Thus, we have: if g` − h` = k, then p`(g, h) = −1/(ϕ(`k)`(r+1)h`); if g` − h` = k − 1, then
p`(g, h) = `/(ϕ(`k)`(r+1)h`); otherwise, p`(g, h) = 0. �

6. PRESCRIBING VALUATIONS FOR THE ORDER

In this section we apply Theorem 1 to prove an asymptotic formula for the number of primes
p of K for which the order of (G mod p) has some prescribed `-adic valuations for finitely
many given primes `.

Theorem 21. Let K be a number field and let G be a finitely generated and torsion-free
subgroup of K× of positive rank r. Let F/K be a finite Galois extension, and let C be a
conjugacy-stable subset of Gal(F/K). Consider finitely many prime numbers `, and for each
of them fix a nonnegative integer a`. Set k =

∏
` and m =

∏
`a` , where ` runs through the

considered primes. Consider the set of primes of K given by

V =

{
p : v`(ordp(G)) = a` ∀` | k,

(
p

F/K

)
⊆ C

}
,

where we are assuming that p /∈ P(G) and p does not ramify in F . Then, for 0 < ε < 1 we
have

V(x) = x

log x

∑
f |k

µ(f)%C,mf +Oε

(
τ(k)x

(
(log log x)2

log x

)1+ 1−ε
3(r+1)

)
,

where, for t > 1, %C,t is as in (2), so that the set V has natural density

γC,k,m :=
∑
f |k

∑
n|(fm)∞

∑
d|fm

µ(f)µ(d)c(fmn, dn)

[Ffmn,dn : K]

(with c(a, b) as in (3)). The constant implied by the O-term depends only on ε, F , K, G.

It follows from Proposition 15 that the series γC,k,m is convergent.

Proof. We must have that ordp(G) is divisible by m and not by m` for any prime factor `
of k. Hence applying the inclusion-exclusion principle and Theorem 1 we obtain the desired
formula. �

Notice that γC,k,m is given by a finite sum of terms of the form ±%C,t.

Remark 22. Let k be a positive integer. The density of primes p of K such that ordp(G) is
coprime with k and (p, F/K) ⊆ C is given by∑

f |k

µ(f)%C,f .

This follows directly from Theorem 1 and it is a special case of Theorem 21.

In the following we provide an explicit formula for the special case of trivial condition on the
Frobenius.

Corollary 23. Let K be a number field and let G be a torsion-free subgroup of K× of positive
rank r. Let k,m > 1 be integers with k squarefree and rad(m) | k. Let γk,m be the natural
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density of the set of primes p of K such that v`(ordp(G)) = v`(m) for all ` | k (where
p /∈ P(G)). Then there is an integer z, which depends only on K and G, such that

γk,m =
1

ϕ(m)

∏
`|m
`-z

(`− 1)(`r − 1)

`r+1 − 1

∏
`|k

`-mz

(
1− `(`r − 1)

(`r+1 − 1)(`− 1)

)
·
∑
g|z

(m,z)|g
rad(g)|k

∑
h|g

p(g, h)

[Kg,h : K]
,

where, for h | g, we set p(g, h) = 0 if and only if at least one of the following conditions holds:

• there is ` | (k, g), ` - m, such that v`(g/h) > 1,
• there is ` | (g,m), ` - h, such that we have v`(g) /∈ {v`(z), v`(m), v`(m) + 1}, or
v`(g) = v`(z) > v`(m) + 1,
• there is ` | (h,m), such that we have v`(g/h) > v`(m) + 1, or we have v`(z/g) > 0

and v`(g/h) < v`(m)− 1;

else we define p(g, h) = ϕ(g)
h · q1(g, h)q2(g, h), with

q1(g, h) =
∏

`|g,`-m
v`(g/h)=1

−1
`− 1

·
∏

`|h,`-m
v`(z/h)=0

`r+1

`r+1 − 1
·

∏
`|h,`-m

v`(h)=v`(g)<v`(z)

`

`− 1

(the primes involved in these products are coprime with m), and

q2(g, h) =
∏

`|(h,m)
v`(z/h)=0

−`r(`− 1)2

`r+1 − 1
·

∏
`|(g,m)

v`(g/h)=v`(m)+1

−1
`
·

∏
`|g,`-h

v`(g)=v`(z)6v`(m)

`− 1

`
·

∏
`|(h,m),v`(z/g)>0

v`(g/h)=v`(m)

2·

∏
`|h,v`(z/g)=0

0<v`(g/h)<v`(m)

−(`− 1)2

`
·

∏
`|h,v`(z/g)=0

v`(g/h)=v`(m)>0

2`− 1

`
·

∏
`|h,v`(z/g)>0

v`(g/h)=v`(m)−1

−`

(the primes involved in these products are prime factors of m).

Proof. The proof is similar to that of Theorem 18 and does not contain new ingredients: one
needs to first apply [12, Theorem 1.1], then transform the obtained inner sums into a product
on the prime factors ` of k, and compute these through a certain case distinction. �

7. CONDITIONAL RESULTS ASSUMING GRH

In this section we show how Theorems 1 and 2 can be improved if we assume (GRH) for the
Dedekind zeta functions of number fields of the typeKm,n. In fact, in this case we can apply the
stronger version of the Chebotarev density theorem, namely [15, Théorème 4] or [18, Theorem
2], and we obtain smaller error terms. Let us first apply this theorem to cyclotomic-Kummer
extensions of K.

Lemma 24. Let F/K be a Galois extension of number fields, C a conjugacy-stable subset
of Gal(F/K), and let G be a finitely generated and torsion-free subgroup of K×. Assuming
(GRH), the number of primes p of K with N p 6 x which split completely in Km,n, where n |
m, and such that the Frobenius conjugacy class (p, F/K) is in C (in other words, (p, F/K) ⊆
Cm,n, where Cm,n is as in (13)) is given by

(32) π(Fm,n/K,Cm,n)(x) =
|Cm,n|

[Fm,n : K]
Li(x) +OF,G

(√
x log(mx)

)
.
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Proof. Applying [15, Théorème 4] we have

|Cm,n|
[Fm,n : K]

Li(x) +O

(
|Cm,n|

[Fm,n : K]

√
x log

( ∣∣dFm,n

∣∣x[Fm,n:Q]
))

.

Recalling that |Cm,n| 6 [F : K] and applying Lemma 9, we can reduce the error term to

OF

(√
x ·

log
∣∣dFm,n

∣∣
[Fm,n : Q]

+
√
x log x

)
= OF,G

(√
x logm+

√
x log x

)
. �

Theorem 25. With the setup of Theorem 1, assuming (GRH), for all 0 < ε < 1/4 we have

Pm(x) = Li(x)%C,m +OF,K,G,ε(x
3/4+ε).

Proof. We follow the proof of Theorem 1. Recall (16), where Bn was defined in the proof of
Lemma 11. Applying first Lemma 11, and then Lemma 24 to the functions π1mn,dn(x) (notice
that (32) also holds if we restrict to the primes of K of degree 1), setting y := x1/4 we obtain:

Pm(x) = Li(x)%C,m +O

( ∑
n6y/m

∑
d|m

√
x log(mnx)

)
+O

( √
x

log x

)
(33)

+O

(
Li(x)

∑
n|m∞
nm>y

∑
d|m

µ(d)c(mn, dn)

[Fmn,dn : K]

)
+O

( ∑
n|m∞
nm>y

Bn(x)

)
.(34)

The first O-term in (33) is bounded by

τ(m)
√
x

( ∑
n6y/m

log n+
∑

n6y/m

2 log x

)
� x3/4 log x.

For 0 < ε < 1/4 and z > y, the two O-terms in (34) are bounded by

x log log x

x1/4−ε log x
and x

( log log x

log(x/z)x1/4−ε
+

1

z1−4ε

)
,

respectively. Taking z =
√
x and collecting all error terms yields the formula in the statement.

�

Corollary 26. Assume (GRH). With the setup of Theorem 2, we have

Nk(x) = Li(x)βC,k +OF,K,G

(
x

log2 x

)
.

Moreover, with the setup of Theorem 21, for all 0 < ε < 1/4 we have

V(x) = Li(x)γC,k,m +OF,K,G,ε
(
τ(k)x3/4+ε

)
.

Proof. As for the first assertion, it is sufficient to follow the proof of Theorem 2, making use
of Theorem 25 instead of Theorem 1. This yields

Nk(x) = Li(x)βC,k +O

(
x

(log x)1+a(k−1−η)

)
+O

(
x3/4+ε(log x)a

)
.

We may conclude by taking a = 1/(k − 1 − η) (with η, ε sufficiently small). The second
assertion is a direct consequence of Theorem 25. �
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8. NUMERICAL DATA

In this section we provide several examples of densities computed with the formulas of The-
orem 18 and Corollaries 20 and 23. All values have been verified with SageMath [14] by
computing the approximated density that considers only primes up to a certain bound. In
particular, we have tested these formulas for K and G as in the several numerical examples
from [1, 6–9] (notice that in [1, Table 3, left side] the density for the fifth and seventh entries
should both read 121/960).

Let K be a number field and G a finitely generated subgroup of K×. Recall the notation %m
introduced in Theorem 18. In Tables 1-4 we provide several examples of densities %m.

G %2 %3 %4 %6 %9 %12 %16 %27

〈2〉 17/24 3/8 5/12 17/64 1/8 5/32 1/24 1/24
〈16〉 1/12 3/8 1/24 1/32 1/8 1/64 1/96 1/24
〈3〉 2/3 3/8 1/3 5/16 1/8 1/16 1/12 1/24
〈27〉 2/3 1/8 1/3 5/48 1/24 1/48 1/12 1/72
〈2, 3〉 195/224 6/13 27/56 333/728 2/13 3/14 5/56 2/39
〈16, 27〉 75/112 5/13 75/224 235/728 5/39 95/1456 75/896 5/117
〈2, 27, 25〉 839/960 37/80 59/120 17723/38400 37/240 1073/4800 11/120 37/720

TABLE 1. Examples of densities %m with K = Q

G %2 %3 %4 %6 %9 %12 %16 %27

〈2〉 17/24 3/4 5/12 17/32 1/4 5/16 1/24 1/12
〈16〉 1/12 3/4 1/24 1/16 1/4 1/32 1/96 1/12
〈3〉 5/6 3/4 1/6 5/8 1/4 1/8 1/24 1/12
〈27〉 5/6 1/4 1/6 5/24 1/12 1/24 1/24 1/36
〈2, 3〉 111/112 12/13 13/28 333/364 4/13 3/7 3/56 4/39
〈16, 27〉 47/56 10/13 19/112 235/364 10/39 95/728 19/448 10/117
〈2, 27, 25〉 479/480 37/40 29/60 17723/19200 37/120 1073/2400 7/120 37/360

TABLE 2. Examples of densities %m with K = Q(ζ3)

G %2 %3 %4 %6 %9 %12 %16 %27

〈2〉 11/12 3/4 5/6 11/16 1/4 5/8 1/12 1/12
〈16〉 1/6 3/4 1/12 1/8 1/4 1/16 1/48 1/12
〈3〉 2/3 3/4 1/3 1/2 1/4 1/4 1/12 1/12
〈27〉 2/3 1/4 1/3 1/6 1/12 1/12 1/12 1/36
〈2, 3〉 55/56 12/13 13/14 165/182 4/13 6/7 3/28 4/39
〈16, 27〉 19/28 10/13 19/56 95/182 10/39 95/364 19/224 10/117
〈2, 27, 25〉 239/240 37/40 29/30 8843/9600 37/120 1073/1200 7/60 37/360

TABLE 3. Examples of densities %m with K = Q(ζ4,
√
3)
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G %2 %3 %4 %6 %9 %12 %16 %27

〈2ζ4〉 2/3 3/8 1/3 1/4 1/8 1/8 1/12 1/24
〈16ζ4〉 47/48 3/8 23/24 47/128 1/8 23/64 1/48 1/24
〈3ζ4〉 5/6 3/8 2/3 11/32 1/8 5/16 1/6 1/24
〈27ζ4〉 5/6 1/8 2/3 11/96 1/24 5/48 1/6 1/72
〈2ζ4, 3ζ4〉 13/14 6/13 5/7 165/364 2/13 3/7 5/28 2/39
〈16ζ4, 27〉 1791/1792 5/13 447/448 4475/11648 5/39 1115/2912 75/448 5/117
〈2ζ4, 27, 25〉 29/30 37/80 11/15 259/600 37/240 259/1200 11/60 37/720

TABLE 4. Examples of densities %m with K = Q(ζ4)

Recall the notation βk from Corollary 20 (which is the density of primes p of K such that
ordp(G) is k-free), and the constants Ak,r defined in (30). In Table 5 we show some values
for these constants Ak,r, approximated by considering only the primes ` up to 105. In Tables
6 and 7 we provide some examples of densities βk, expressed both as rational multiples of the
constants Ak,r and as approximated value.

Ak,r k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
r = 1 0.530712 0.788163 0.901926 0.953511 0.977581 0.989060 0.994618
r = 2 0.434934 0.734313 0.875354 0.940597 0.971280 0.985966 0.993091
r = 3 0.401045 0.714103 0.865118 0.935552 0.968798 0.984741 0.992484
r = 4 0.386687 0.705354 0.860624 0.933316 0.967691 0.984192 0.992211
r = 5 0.380106 0.701307 0.858528 0.932267 0.967169 0.983932 0.992082

TABLE 5. Examples of constants Ak,r approximated (` < 105)

G β2 β3 β4 β5

〈2〉 3
4A2,1 ≈ 0.398 121

115A3,1 ≈ 0.829 805
781A4,1 ≈ 0.930 5029

4945A5,1 ≈ 0.970

〈16〉 69
56A2,1 ≈ 0.654 517

460A3,1 ≈ 0.886 3325
3124A4,1 ≈ 0.960 20437

19780A5,1 ≈ 0.985

〈3〉 15
14A2,1 ≈ 0.569 121

115A3,1 ≈ 0.829 805
781A4,1 ≈ 0.930 5029

4945A5,1 ≈ 0.970

〈27〉 55
42A2,1 ≈ 0.695 77

69A3,1 ≈ 0.880 2461
2343A4,1 ≈ 0.947 15181

14835A5,1 ≈ 0.976

〈2, 3〉 135
176A2,2 ≈ 0.334 875

814A3,2 ≈ 0.789 5989
5750A4,2 ≈ 0.912 37823

36994A5,2 ≈ 0.962

〈16, 27〉 899
704A2,2 ≈ 0.555 21935

19536A3,2 ≈ 0.824 48763
46000A4,2 ≈ 0.928 914711

887856A5,2 ≈ 0.969

〈2, 27, 25〉 95201
119193A2,3

105751169
96766014 A3,3

524265887
500045142A4,3

116376274169
113496822354A5,3

≈ 0.320 ≈ 0.780 ≈ 0.907 ≈ 0.959

TABLE 6. Examples of densities βk over K = Q(ζ3)
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G β2 β3 β4 β5

〈2〉 1
4A2,1 ≈ 0.133 A3,1 ≈ 0.788 A4,1 ≈ 0.902 A5,1 ≈ 0.953

〈16〉 11
8 A2,1 ≈ 0.730 23

20A3,1 ≈ 0.906 47
44A4,1 ≈ 0.963 95

92A5,1 ≈ 0.985

〈3〉 3
7A2,1 ≈ 0.227 91

115A3,1 ≈ 0.624 709
781A4,1 ≈ 0.819 4729

4945A5,1 ≈ 0.912

〈27〉 11
21A2,1 ≈ 0.278 283

345A3,1 ≈ 0.647 2149
2343A4,1 ≈ 0.827 331

345A5,1 ≈ 0.915

〈2, 3〉 9
176A2,2 ≈ 0.0222 329

407A3,2 ≈ 0.594 2641
2875A4,2 ≈ 0.804 17795

18497A5,2 ≈ 0.905

〈16, 27〉 1073
2112A2,2 ≈ 0.221 5501

6512A3,2 ≈ 0.620 128873
138000A4,2 ≈ 0.817 286741

295952A5,2 ≈ 0.911

〈2, 27, 25〉 23323
953544A2,3

79247549
96766014A3,3

3234551969
3500315994A4,3

109490052089
113496822354A5,3

≈ 0.00981 ≈ 0.585 ≈ 0.799 ≈ 0.903

TABLE 7. Examples of densities βk over K = Q(ζ4)

Finally, recall the notation γk,m from Corollary 23 (which is the density of primes p of K such
that ordp(G) has `-adic valuation equal to v`(m) for every prime ` | k). In Table 8 we provide
some examples of these densities.

G γ6,1 γ6,2 γ6,3 γ6,4 γ6,6 γ6,9 γ6,12
〈2〉 35/192 35/192 7/96 5/24 7/96 7/288 1/12
〈16〉 55/96 5/192 11/48 5/384 1/96 11/144 1/192
〈3〉 13/48 1/12 1/24 13/96 1/6 1/72 1/48
〈27〉 5/16 1/4 1/72 5/32 1/18 1/216 1/144
〈2, 3〉 365/2912 423/2912 1/364 101/728 59/364 1/1092 10/91
〈16, 27〉 391/1456 225/2912 15/364 785/5824 125/728 5/364 95/4368
〈2, 27, 25〉 801/6400 927/6400 37/28800 443/3200 4699/28800 37/86400 1591/14400

TABLE 8. Examples of densities γk,m over K = Q(
√
−5)
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