Das, S. et al. Observation of room temperature polar skyrmions. Nature 568, 368–372 (2019).
Yadav, A. K. et al. Spatially resolved steady state negative capacitance. Nature 565, 468–471 (2019).
Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
Nahas, Y. et al. Discovery of stable skyrmionic states in ferroelectric nanocomposites. Nat. Commun. 6, 8542 (2015).
Zhang, Q. et al. Nanoscale bubble domains and topological transitions in ultrathin ferroelectric films. Adv. Mater. 29, 1702375 (2017).
Gregg, J. M. Exotic domain states in ferroelectrics: searching for vortices and skyrmions. Ferroelectrics 433, 74–87 (2012).
Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).
Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).
Salahuddin, S. & Datta, S. Can the subthreshold swing in a classical FET be lowered below 60 mV/decade? In 2008 IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).
Theis, T. N. & Solomon, P. M. It’s time to reinvent the transistor! Science 327, 1600–1601 (2010).
Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).
Appleby, D. J. R. et al. Experimental observation of negative capacitance in ferroelectrics at room temperature. Nano Lett. 14, 3864–3868 (2014).
Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 4, 243–256 (2019).
Hoffman, M. et al. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).
Bratkovsky, A. M. & Levanyuk, A. P. Depolarizing field and “real” hysteresis loops in nanometer-scale ferroelectric films. Appl. Phys. Lett. 89, 253108 (2006).
Wang, X. et al. Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019).
Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, 1977).
Wu, X., Yang, E. S. & Evans, H. L. Negative capacitance at metal-semiconductor interfaces. J. Appl. Phys. 68, 2845–2848 (1990).
Hoffman, M. et al. Ferroelectric negative capacitance domain dynamics. J. Appl. Phys. 123, 184101 (2018).
Damodaran, A. R. et al. Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics. Nat. Commun. 8, 14961 (2017).
O’Neill, D., Bowman, R. M. & Gregg, J. M. Dielectric enhancement and Maxwell–Wagner effects in ferroelectric superlattice structures. Appl. Phys. Lett. 77, 1520–1522 (2000).
Catalan, G., O’Neill, D., Bowman, R. M. & Gregg, J. M. Relaxor features in ferroelectric superlattices: a Maxwell–Wagner approach. Appl. Phys. Lett. 77, 3078–3080 (2000).
Arai, H. et al. Fundamental characteristics of superconducting fault current limiter using LC resonance circuit. IEEE Trans. Appl. Supercond. 16, 642–645 (2006).
Luk’yanchuk, I. et al. Electrodynamics of ferroelectric films with negative capacitance. Phys. Rev. B 98, 024107 (2018).
Kamba, S. et al. Dielectric dispersion of the relaxor PLZT ceramics in the frequency range 20 Hz-100 THz. J. Phys. Condens. Matter 12, 497–519 (2000).
Bovtun, V. et al. Comparison of the dielectric response of relaxor PbMg1/3Nb2/3O3 ceramics and single crystals. Integr. Ferroelectr. 69, 3–10 (2005).
Kittel, C.Introduction to Solid State Physics (Wiley, 1966).
Watanabe, Y. in Ferroelectric Thin Films: Basic Properties and Device Physics for Memory Applications (eds Okuyama, M. & Ishibashi, Y.) 177–199 (Springer, 2005).
Zubko, P., Stucki, N., Lichtensteiger, C. & Triscone, J.-M. X-ray diffraction studies of 180° ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field. Phys. Rev. Lett. 104, 187601 (2010).
Boulle, A., Infante & Lemée, N. Diffuse X-ray scattering from 180° ferroelectric stripe domains: polarization-induced strain, period disorder and wall roughness. J. Appl. Cryst. 49, 845–855 (2016).
Okamura et al. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound. Nat. Commun. 7, 12669 (2016).
Fujishiro et al. Topological transitions among skyrmion- and hedgehog-lattice states in cubic chiral magnets. Nat. Commun. 10, 1059 (2019).
Yang et al. Electric field driven evolution of topological domain structure in hexagonal manganites. Phys. Rev. B 96, 144103 (2017).
Zong et al. Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 15, 27–31 (2019).
Schulz, A. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).
Marks, R. B. A multiline method of network analyzer calibration. IEEE Trans. Microw. Theory Tech. 39, 1205–1215 (1991).
Williams, D. F., Wang, J. C. M. & Arz, U. An optimal vector-network analyzer calibration algorithm. IEEE Trans. Microw. Theory Tech. 51, 2391–2401 (2003).
Li, Q. et al. Simultaneous scanning near-field optical and X-ray diffraction microscopy for correlative nanoscale structure–property characterization. J. Synchrotron Radiat. 26, 1790–1796 (2019).
Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).
Nystrom, N. A., Levine, M. J., Roskies, R. Z. & Scott, J. R. Bridges: a uniquely flexible HPC resource for new communities and data analytics. In Proc. 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure Vol. 30, 1–8 (2015).
Chen, L.-Q. Phase‐field method of phase transitions/domain structures in ferroelectric thin films: a review. Appl. Phys. Lett. 91, 1835–1844 (2008).
Sheng, G., Li, Y. L. & Zhang, J. X. A modified Landau–Devonshire thermodynamic potential for strontium titanate. Appl. Phys. Lett. 96, 232902 (2010).
Tagantsev, A. et al. Landau expansion for ferroelectrics: which variable to use? Ferroelectrics 375, 19–27 (2008).
Wojdeł, J. C., Hermet, P., Ljungberg, M. P., Ghosez, P. & Íñiguez, J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013).
Wojdeł, J. C. & Íñiguez, J. Ferroelectric transitions at ferroelectric domain walls found from first-principles. Phys. Rev. Lett. 112, 247603 (2014).
Gonçalves, M. A. P. et al. Theoretical guidelines to create and tune electric skyrmion bubbles. Sci. Adv. 5, eaau7023 (2019).
B. Berg, B. & Lüscher, M. Definition and statistical distributions of a topological number in the lattice O(3) σ-model. Nucl. Phys. B. 190, 412–424 (1981).