Article (Scientific journals)
Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge
Sieberts, S.; Schaff, J.; Duda, M. et al.
2021In npj Digital Medicine, 4 (53)
Peer Reviewed verified by ORBi
 

Files


Full Text
Sieberts_et_al-2021-npj_Digital_Medicine.pdf
Publisher postprint (1.6 MB)
Download

The original publication is available at: https://doi.org/10.1038/s41746-021-00414-7


All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Parkinson’s Disease; Digital Biomarker; machine learning; tremor; dyskinesia; bradykinesia; mobile phone; smart sensors; biomarkers
Abstract :
[en] Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s Disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC=0.87), as well as tremor- (best AUPR=0.75), dyskinesia- (best AUPR=0.48) and bradykinesia-severity (best AUPR=0.95).
Research center :
- Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Life sciences: Multidisciplinary, general & others
Biotechnology
Human health sciences: Multidisciplinary, general & others
Neurology
Author, co-author :
Sieberts, S.
Schaff, J.
Duda, M.
Pataki, B.
Sun, M.
Snyder, P.
Daneault, J.
Parisi, F.
Costante, G.
Rubin, U.
Banda, P.
Chae, Y.
Neto, E.
Dorsey, E.
Aydin, Z.
Chen, A.
Elo, L.
Espino, C.
GLAAB, Enrico  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
Goan, E.
Golabchi, F.
Görmez, Y.
Jaakkola, M.
Jonnagaddala, J.
Klén, R.
Li, D.
McDaniel, C.
Perrin, D.
Rad, N.
Perumal, T.
Rainaldi, E.
Sapienza, S.
Schwab, P.
Shokhirev, N.
Venäläinen, M.
Vergara-Diaz, G.
Wang, Y.;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Humanities (DHUM)
Consortium, The Parkinson S Disease Digital Biomarker Challenge
Guan, Y.
Brunner, D.
Bonato, P.
Mangravite, L.
Omberg, L.
More authors (33 more) Less
External co-authors :
yes
Language :
English
Title :
Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge
Publication date :
2021
Journal title :
npj Digital Medicine
eISSN :
2398-6352
Publisher :
Nature Publishing Group, United States
Volume :
4
Issue :
53
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Systems Biomedicine
Additional URL :
FnR Project :
FNR11651464 - Multi-dimensional Stratification Of Parkinson'S Disease Patients For Personalised Interventions, 2017 (01/07/2018-30/06/2021) - Enrico Glaab
Name of the research project :
PD-Strat > Multi-dimensional Stratification Of Parkinson’S Disease Patients For Personalised Interventions > 01/07/2018 > 30/06/2021 > 2017
Funders :
FNR - Fonds National de la Recherche
Available on ORBilu :
since 08 February 2021

Statistics


Number of views
184 (24 by Unilu)
Number of downloads
129 (7 by Unilu)

Scopus citations®
 
32
Scopus citations®
without self-citations
26
OpenCitations
 
9
OpenAlex citations
 
39
WoS citations
 
24

Bibliography


Similar publications



Contact ORBilu