Article (Périodiques scientifiques)
Presentations of groups acting discontinuously on direct products of hyperbolic spaces
Jespers, E.; KIEFER, Ann; del Río, Á.
2016In Mathematics of Computation, 85 (301), p. 2515--2552
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
dRioJesKieferreviewed.pdf
Postprint Auteur (662.98 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Hilbert Modular Group; Discontinuous Action on Direct Product of Hyperbolic 2-space; Presentation, Fundamental Domain; Group Rings; Unit Group
Résumé :
[en] The problem of describing the group of units U(ZG) of the integral group ring ZG of a finite group G has attracted a lot of attention and providing presentations for such groups is a fundamental problem. Within the context of orders, a central problem is to describe a presentation of the unit group of an order O in the simple epimorphic images A of the rational group algebra QG. Making use of the presentation part of Poincaré’s Polyhedron Theorem, Pita, del Río and Ruiz proposed such a method for a large family of finite groups G and consequently Jespers, Pita, del Río, Ruiz and Zalesskii described the structure of U(ZG) for a large family of finite groups G. In order to handle many more groups, one would like to extend Poincaré’s Method to discontinuous subgroups of the group of isometries of a direct product of hyperbolic spaces. If the algebra A has degree 2 then via the Galois embeddings of the centre of the algebra A one considers the group of reduced norm one elements of the order O as such a group and thus one would obtain a solution to the mentioned problem. This would provide presentations of the unit group of orders in the simple components of degree 2 of QG and in particular describe the unit group of ZG for every group G with irreducible character degrees less than or equal to 2. The aim of this paper is to initiate this approach by executing this method on the Hilbert modular group, i.e. the projective linear group of degree two over the ring of integers in a real quadratic extension of the rationals. This group acts discontinuously on a direct product of two hyperbolic spaces of dimension two. The fundamental domain constructed is an analogue of the Ford domain of a Fuchsian or a Kleinian group.
Disciplines :
Mathématiques
Auteur, co-auteur :
Jespers, E.
KIEFER, Ann  ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > LUCET
del Río, Á.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Presentations of groups acting discontinuously on direct products of hyperbolic spaces
Date de publication/diffusion :
2016
Titre du périodique :
Mathematics of Computation
ISSN :
0025-5718
eISSN :
1088-6842
Maison d'édition :
American Mathematical Society, Etats-Unis
Volume/Tome :
85
Fascicule/Saison :
301
Pagination :
2515--2552
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 21 janvier 2021

Statistiques


Nombre de vues
92 (dont 2 Unilu)
Nombre de téléchargements
2 (dont 2 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
2
OpenCitations
 
1
citations OpenAlex
 
2
citations WoS
 
3

Bibliographie


Publications similaires



Contacter ORBilu