[en] Let M be a differentiable manifold endowed with a family of complete Riemannian metrics g(t) evolving under a geometric flow over the time interval [0,T[. In this article, we give a probabilistic representation for the derivative of the corresponding conjugate semigroup on M which is generated by a Schrödinger type operator. With the help of this derivative formula, we derive fundamental Harnack type inequalities in the setting of evolving Riemannian manifolds. In particular, we establish a dimension-free Harnack inequality and show how it can be used to achieve heat kernel upper bounds in the setting of moving metrics. Moreover, by means of the supercontractivity of the conjugate semigroup, we obtain a family of canonical log-Sobolev inequalities. We discuss and apply these results both in the case of the so-called modified Ricci flow and in the case of general geometric flows.
Disciplines :
Mathématiques
Auteur, co-auteur :
Cheng, Li-Juan; Hangzhou Normal University, Hangzhou, China > School of Mathematics
THALMAIER, Anton ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Dimension-free Harnack inequalities for conjugate heat equations and their applications to geometric flows
[Abolarinwa 2015] A. Abolarinwa, “Differential Harnack estimates for conjugate heat equation under the Ricci flow”, Asian-Eur. J. Math. 8:4 (2015), art. id. 1550063. MR Zbl
[Abolarinwa 2016] A. Abolarinwa, “Sobolev-type inequalities and heat kernel bounds along the geometric flow”, Afr. Mat. 27:1-2(2016), 169-186. MR Zbl
[Bakry 1997] D. Bakry, “On Sobolev and logarithmic Sobolev inequalities for Markov semigroups”, pp. 43-75 in New trends in stochastic analysis (Charingworth, UK, 1994), edited by K. D. Elworthy et al., World Sci., River Edge, NJ, 1997. MR
[Bismut 1984] J.-M. Bismut, Large deviations and the Malliavin calculus, Progr. Math. 45, Birkhäuser, Boston, 1984. MR Zbl
[Băileşteanu 2012] M. Băileşteanu, “Bounds on the heat kernel under the Ricci flow”, Proc. Amer. Math. Soc. 140:2 (2012), 691-700. MR Zbl
[Buzano and Yudowitz 2020] R. Buzano and L. Yudowitz, “Gaussian upper bounds for the heat kernel on evolving manifolds”, preprint, 2020. arXiv 2007.07112
[Cao et al. 2015] X. Cao, H. Guo, and H. Tran, “Harnack estimates for conjugate heat kernel on evolving manifolds”, Math. Z. 281:1-2(2015), 201-214. MR Zbl
[Cheng 2017] L.-J. Cheng, “Diffusion semigroup on manifolds with time-dependent metrics”, Forum Math. 29:4 (2017), 775-798. MR Zbl
[Cheng and Thalmaier 2018a] L.-J. Cheng and A. Thalmaier, “Characterization of pinched Ricci curvature by functional inequalities”, J. Geom. Anal. 28:3 (2018), 2312-2345. MR Zbl
[Cheng and Thalmaier 2018b] L.-J. Cheng and A. Thalmaier, “Evolution systems of measures and semigroup properties on evolving manifolds”, Electron. J. Probab. 23 (2018), art. id. 20. MR Zbl
[Cheng and Thalmaier 2018c] L.-J. Cheng and A. Thalmaier, “Spectral gap on Riemannian path space over static and evolving manifolds”, J. Funct. Anal. 274:4 (2018), 959-984. MR Zbl
[Coulibaly-Pasquier 2019] K. A. Coulibaly-Pasquier, “Heat kernel coupled with geometric flow and Ricci flow”, pp. 221-256 in Séminaire de probabilités L (Tours, France, 2018), edited by C. Donati-Martin et al., Lecture Notes in Math. 2252, Springer, 2019. MR Zbl
[Davies 1987] E. B. Davies, “Explicit constants for Gaussian upper bounds on heat kernels”, Amer. J. Math. 109:2 (1987), 319-333. MR Zbl
[Elworthy and Li 1994] K. D. Elworthy and X.-M. Li, “Formulae for the derivatives of heat semigroups”, J. Funct. Anal. 125:1 (1994), 252-286. MR Zbl
[Grigoryan 1997] A. Grigoryan, “Gaussian upper bounds for the heat kernel on arbitrary manifolds”, J. Differential Geom. 45:1 (1997), 33-52. MR Zbl
[Gross 1975] L. Gross, “Logarithmic Sobolev inequalities”, Amer. J. Math. 97:4(1975), 1061-1083. MR Zbl
[Hamilton 1993] R. S. Hamilton, “The Harnack estimate for the Ricci flow”, J. Differential Geom. 37:1 (1993), 225-243. MR Zbl
[Kuang and Zhang 2008] S. Kuang and Q. S. Zhang, “A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow”, J. Funct. Anal. 255:4 (2008), 1008-1023. MR Zbl
[Perelman 2002] G. Perelman, “The entropy formula for the Ricci flow and its geometric applications”, preprint, 2002. Zbl arXiv math/0211159
[Röckner and Wang 2003] M. Röckner and F.-Y. Wang, “Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds”, Forum Math. 15:6 (2003), 893-921. MR Zbl
[Thalmaier 1997] A. Thalmaier, “On the differentiation of heat semigroups and Poisson integrals”, Stochastics Stochastics Rep. 61:3-4(1997), 297-321. MR Zbl
[Thompson 2019] J. Thompson, “Derivatives of Feynman-Kac semigroups”, J. Theoret. Probab. 32:2 (2019), 950-973. MR Zbl
[Wang 2001] F.-Y. Wang, “Logarithmic Sobolev inequalities: conditions and counterexamples”, J. Operator Theory 46:1 (2001), 183-197. MR Zbl
[Wang 2011] F.-Y. Wang, “Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds”, Ann. Probab. 39:4(2011), 1449-1467. MR Zbl
[Wang 2014] F.-Y. Wang, Analysis for diffusion processes on Riemannian manifolds, Adv. Ser. Statist. Sci. Appl. Prob. 18, World Sci., Hackensack, NJ, 2014. MR Zbl
[Zhang 2006] Q. S. Zhang, “Some gradient estimates for the heat equation on domains and for an equation by Perelman”, Int. Math. Res. Not. 2006 (2006), art. id. 92314. MR Zbl