Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Sparse Gaussian Process Based On Hat Basis Functions
Fang, W.; Li, H.; HUANG, Hui et al.
2020In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)
Peer reviewed
 

Documents


Texte intégral
Sparse Gaussian Process Based On Hat Basis Functions.pdf
Postprint Éditeur (1.22 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Gaussian processes;Kernel;Training data;Covariance matrices;Training;Mathematical model;Computational complexity;Gaussian process;hat basis function;sparse Gaussian process;spectral approximation
Résumé :
[en] Gaussian process is a popular non-parametric Bayesian methodology for modeling the regression problem, which is completely determined by its mean and covariance function. Nevertheless, this method still has two major disadvantages: it is difficult to handle large datasets and may not meet inequality constraints in specific problems. These two issues have been addressed by the so-called sparse Gaussian process and constrained Gaussian process in recent years. In this paper, to reduce the overall computational complexity in the exact Gaussian process, we propose a new sparse Gaussian process method to solve the unconstrained regression problem. The idea is inspired by the constrained Gaussian process method. The critical point of our method is that we introduce the hat basis function, which is mentioned in the constrained Gaussian process, and modify its definition according to the range of training or test data. It turns out that this method belongs to the spectral approximation methods. Similar to the exact Gaussian process and Gaussian process with Fully Independent Training Conditional approximation, our method obtains satisfactory approximate results on analytical functions or open-source datasets.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Fang, W.;  Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
Li, H.;  Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
HUANG, Hui  ;  University of Luxembourg
Dang, S.;  Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
Huang, Z.;  Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
Wang, Z.;  Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Sparse Gaussian Process Based On Hat Basis Functions
Date de publication/diffusion :
28 août 2020
Nom de la manifestation :
2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Istanbul, Turquie
Date de la manifestation :
12-13 June 2020
Manifestation à portée :
International
Titre de l'ouvrage principal :
2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)
Maison d'édition :
IEEE
ISBN/EAN :
978-1-7281-7117-3
Pagination :
1-5
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 28 septembre 2020

Statistiques


Nombre de vues
189 (dont 6 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBilu