Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Performance Modelling of V2V based Collective Perceptions in Connected and Autonomous Vehicles
HUANG, Hui; Fang, Wenqi; Li, Huiyun
2019In 2019 IEEE 44th Conference on Local Computer Networks (LCN)
Peer reviewed
 

Documents


Texte intégral
08990854.pdf
Postprint Éditeur (1.39 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Collective perceptions; V2X communications; connected and autonomous vehicles
Résumé :
[en] With the introduction of Connected and Autonomous Vehicles (CAVs), it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their sensory information with others using Vehide-2-Vehicle (V2V) communications. This technique relies on a certain number of participants to have a measurable advantage. Nevertheless, the spread of CAVs will take a considerable period of time, it is critical to understand the benefits and limits of V2V based collective perceptions in different market stages. In this work, we characterise the effective Field of View (eFoV) of a vehicle as the perception range using local sensors only, and the collective Field of View (cFoV) as the region learn from the network. Applying analytic and simulation studies in highway scenarios, we show that the eFoV drops quickly with the increase in traffic density due to blockage effects of surrounding vehicles, and it is insufficient to overcome this problem by increasing the sensing range of local sensors. On the other hand, vehicles can gain around 16 folds more information about the road environment by leveraging collective perceptions with only 10\% CAV penetration rate. When the penetration rate reaches to around 30\%, collective perceptions can provide 95\% coverage over the road environments. Our analyses also show that apart from the benefits, employing collective perceptions could result in heavy broadcast redundancy, hence wasting the already scarce network resources. This observation suggests that the sharing of sensory information should be controlled appropriately to avoid overloading the communication networks.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
HUANG, Hui  ;  University of Luxembourg ; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
Fang, Wenqi
Li, Huiyun
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Performance Modelling of V2V based Collective Perceptions in Connected and Autonomous Vehicles
Date de publication/diffusion :
14 octobre 2019
Nom de la manifestation :
2019 IEEE 44th Conference on Local Computer Networks (LCN)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Osnabrueck, Allemagne
Date de la manifestation :
14-10-2019 to 17-10-2019
Manifestation à portée :
International
Titre de l'ouvrage principal :
2019 IEEE 44th Conference on Local Computer Networks (LCN)
Maison d'édition :
IEEE
ISBN/EAN :
978-1-7281-1029-5
Pagination :
356--363
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 28 septembre 2020

Statistiques


Nombre de vues
134 (dont 1 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
18
citations Scopus®
sans auto-citations
17
citations OpenAlex
 
18

Bibliographie


Publications similaires



Contacter ORBilu