Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Working with Deep Generative Models and Tabular Data Imputation
CAMINO, Ramiro Daniel; HAMMERSCHMIDT, Christian; STATE, Radu
2020First Workshop on the Art of Learning with Missing Values (Artemiss)
 

Documents


Texte intégral
Working_with_Deep_Generative_Models_and_Tabular_Data_Imputation.pdf
Postprint Éditeur (176.48 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Datasets with missing values are very common in industry applications. Missing data typically have a negative impact on machine learning models. With the rise of generative models in deep learning, recent studies proposed solutions to the problem of imputing missing values based various deep generative models. Previous experiments with Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) showed promising results in this domain. Initially, these results focused on imputation in image data, e.g. filling missing patches in images. Recent proposals addressed missing values in tabular data. For these data, the case for deep generative models seems to be less clear. In the process of providing a fair comparison of proposed methods, we uncover several issues when assessing the status quo: the use of under-specified and ambiguous dataset names, the large range of parameters and hyper-parameters to tune for each method, and the use of different metrics and evaluation methods.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
CAMINO, Ramiro Daniel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
HAMMERSCHMIDT, Christian ;  Delft University of Technology
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Working with Deep Generative Models and Tabular Data Imputation
Date de publication/diffusion :
17 juillet 2020
Nom de la manifestation :
First Workshop on the Art of Learning with Missing Values (Artemiss)
Organisateur de la manifestation :
Hosted by the 37th International Conference on Machine Learning (ICML)
Lieu de la manifestation :
Vienna, Autriche
Date de la manifestation :
from 12-07-2020 to 18-07-2020
Manifestation à portée :
International
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 20 août 2020

Statistiques


Nombre de vues
312 (dont 9 Unilu)
Nombre de téléchargements
668 (dont 5 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu