Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Component Analysis of Adjectives in Luxembourgish for Detecting Sentiments
SIRAJZADE, Joshgun; GIERSCHEK, Daniela; SCHOMMER, Christoph
2020In Beermann, Dorothee; Besacier, Laurent; Sakti, Sakriani et al. (Eds.) Proceedings of the LREC 2020 1st Joint SLTU and CCURL Workshop(SLTU-CCURL 2020)
Peer reviewed
 

Documents


Texte intégral
ComponentAnalysisofAdjectivesinLuxembourgishforDetectingSentiments.pdf
Postprint Éditeur (473.02 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Opinion Mining; Sentiment Analysis; Corpus (Creation, Annotation, etc.); Luxembourgish Language; Adjectives; Radio Television Luxembourg
Résumé :
[en] The aim of this paper is to investigate the role of Luxembourgish adjectives in expressing sentiments in user comments written at the web presence of rtl.lu (RTL is the abbreviation for Radio Television Lëtzebuerg). Alongside many textual features or representations, adjectives could be used in order to detect sentiment, even on a sentence or comment level. In fact, they are also by themselves one of the best ways to describe a sentiment, despite the fact that other word classes such as nouns, verbs, adverbs or conjunctions can also be utilized for this purpose. The empirical part of this study focuses on a list of adjectives that were extracted from an annotated corpus. The corpus contains the part of speech tags of individual words and sentiment annotation on the adjective, sentence, and comment level. Suffixes of Luxembourgish adjectives like -esch, -eg, -lech, -al, -el, -iv, -ent, -los, -bar and the prefix on- were explicitly investigated, especially by paying attention to their role in regards to building a model by applying classical machine learning techniques. We also considered the interaction of adjectives with other grammatical means, especially other part of speeches, e.g. negations, which can completely reverse the meaning, thus the sentiment of an utterance.
Disciplines :
Langues & linguistique
Sciences informatiques
Auteur, co-auteur :
SIRAJZADE, Joshgun ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
GIERSCHEK, Daniela ;  University of Luxembourg > Faculty of Language and Literature, Humanities, Arts and Education (FLSHASE) > Identités, Politiques, Sociétés, Espaces (IPSE)
SCHOMMER, Christoph  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Component Analysis of Adjectives in Luxembourgish for Detecting Sentiments
Date de publication/diffusion :
mai 2020
Nom de la manifestation :
LREC 2020 Workshop Language Resources and Evaluation Conference 11–16 May 2020, 1st Joint SLTU and CCURL Workshop (SLTU-CCURL 2020)
Organisateur de la manifestation :
European Language Resources Association (ELRA)
Lieu de la manifestation :
Marseille, France
Date de la manifestation :
from 11-05-2020 to 16-05-2020
Titre de l'ouvrage principal :
Proceedings of the LREC 2020 1st Joint SLTU and CCURL Workshop(SLTU-CCURL 2020)
Editeur scientifique :
Beermann, Dorothee
Besacier, Laurent
Sakti, Sakriani
Soria, Claudia
Maison d'édition :
European Language Resources Association (ELRA), Paris, France
ISBN/EAN :
979-10-95546-35-1
9791095546351
Pagination :
159-166
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 11 mai 2020

Statistiques


Nombre de vues
297 (dont 33 Unilu)
Nombre de téléchargements
130 (dont 19 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu