Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Machine learning for physical-layer security: Attacks and SLP Countermeasures for Multiantenna Downlink Systems
MAYOUCHE, Abderrahmane; Spano, Danilo; TSINOS, Christos et al.
20192019 IEEE Global Communications Conference (GLOBECOM)
 

Documents


Texte intégral
GlobeCom_2019_SLP_PLS(2).pdf
Preprint Auteur (301.44 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Machine learning; symbol-level precoding; physical-layer security
Résumé :
[en] Most physical-layer security (PLS) work employ information theoretic metrics for performance analysis. In this paper, however, we investigate PLS from a signal processing point of view, where we rely on bit-error rate (BER) at the eavesdropper (Eve) as a metric for information leakage. Meanwhile, recently, symbol-level precoding (SLP) has been shown to provide PLS gains as a new way for security. However, in this work, we introduce a machine learning (ML) based attack, where we show that even SLP schemes can be vulnerable to such attacks. Namely, this attack manifests when an eavesdropper (Eve) utilizes ML in order to learn the precoding pattern when precoded pilots are sent. With this ability, an Eve can decode data with favorable accuracy. As a countermeasure to this attack, we propose a novel precoding design. The proposed countermeasure yields high BER at the Eve, which makes symbol detection practically infeasible for the latter, thus providing physical-layer security between the base station (BS) and the users. In the numerical results, we validate both the attack and the countermeasure, and show that this gain in security can be achieved at the expense of only a small additional power consumption at the transmitter.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MAYOUCHE, Abderrahmane ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Spano, Danilo
TSINOS, Christos ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Machine learning for physical-layer security: Attacks and SLP Countermeasures for Multiantenna Downlink Systems
Date de publication/diffusion :
décembre 2019
Nom de la manifestation :
2019 IEEE Global Communications Conference (GLOBECOM)
Date de la manifestation :
from 09-12-2019 to 13-12-2019
Manifestation à portée :
International
Projet européen :
H2020 - 742648 - AGNOSTIC - Actively Enhanced Cognition based Framework for Design of Complex Systems
Projet FnR :
FNR11607830 - Exploiting Interference For Physical Layer Security In 5g Networks, 2017 (01/02/2018-31/07/2021) - Bjorn Ottersten
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 24 janvier 2020

Statistiques


Nombre de vues
309 (dont 24 Unilu)
Nombre de téléchargements
5 (dont 3 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu