Automotive radar; MIMO radar; frequency diverse array
Résumé :
[en] Automotive radars usually employ multiple-input multiple-output (MIMO) antenna arrays to achieve high azimuthal resolution with fewer elements than a phased array. Despite this advantage, hardware costs and desired radar size limits the usage of more antennas in the array. Similar trade-off is encountered while attempting to achieve high range resolution which is limited by the signal bandwidth. However, nowadays given the demand for spectrum from communications services, wide bandwidth is not readily available. To address these issues, we propose a sparse variant of Frequency Diverse Array MIMO (FDA-MIMO) radar which enjoys the benefits of both FDA and MIMO techniques, including fewer elements, decoupling, and efficient joint estimation of target parameters. We then employ the Cram\'{e}r-Rao bound for angle and range estimation as a performance metric to design the optimal antenna placement and carrier frequency offsets for the transmit waveforms. Numerical experiments suggest that the performance of sparse FDA-MIMO radar is very close to the conventional FDA-MIMO despite 50\% reduction in the bandwidth and antenna elements.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
SEDIGHI, Saeid ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SHANKAR, Bhavani ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Mishra, Kumar Vijay; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Optimum Design for Sparse FDA-MIMO Automotive Radar
Date de publication/diffusion :
03 novembre 2019
Nom de la manifestation :
The $53^{\rm nd}$ annual Asilomar Conference on Signals, Systems, and Computers
Lieu de la manifestation :
Pacific Grove, Etats-Unis - Californie
Date de la manifestation :
3-10-2019 to 6-10-2019
Titre de l'ouvrage principal :
Asilomar Conference on Signals, Systems, and Computers
Maison d'édition :
IEEE, Etats-Unis - Californie
Peer reviewed :
Peer reviewed
Projet FnR :
FNR11228830 - Compressive Sensing for Ranging and Detection in Automotive Applications, 2016 (15/02/2017-14/02/2021) - Saeid Sedighi