Eprint already available on another site (E-prints, Working papers and Research blog)
Théorie d'Iwasawa des motifs d'Artin et des formes modulaires de poids 1
MAKSOUD, Alexandre
2019
 

Files


Full Text
IwasawaArtin_v3.pdf
Author preprint (484.41 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] Let p be an odd prime. We study the structure of the cyclotomic Greenberg-Selmer group attached to a general irreducible Artin motive over Q endowed with an ordinary p-stabilization. Under the Leopoldt and the weak p-adic Schanuel Conjectures, we show that it is of torsion over the Iwasawa algebra. Under mild hypotheses on p we compute the constant term of its characteristic series in terms of a p-adic regulator and we highlight an extra zeros phenomenon. We then focus on Artin motives attached to classical weight one modular forms, to which our preceding results apply unconditionally. We formulate an Iwasawa Main Conjecture in this context and prove one divisibility using a Theorem of Kato.
Disciplines :
Mathematics
Author, co-author :
MAKSOUD, Alexandre ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Language :
French
Title :
Théorie d'Iwasawa des motifs d'Artin et des formes modulaires de poids 1
Alternative titles :
[en] Iwasawa Theory for Artin motives and weight one modular forms
Publication date :
2019
FnR Project :
FNR12589973 - Galois Representations, Automorphic Forms And Their L-functions, 2018 (01/02/2019-31/08/2024) - Gabor Wiese
Funders :
FNR - Fonds National de la Recherche
Commentary :
Ce travail est soutenu par le Fonds National de la Recherche (FNR), Luxembourg, INTER/ANR/18/12589973 GALF
Available on ORBilu :
since 18 December 2019

Statistics


Number of views
195 (18 by Unilu)
Number of downloads
83 (7 by Unilu)

Bibliography


Similar publications



Contact ORBilu