Communication poster (Colloques, congrès, conférences scientifiques et actes)
Combining PET imaging and blood metabolomics data to improve machine learning models for Parkinson’s disease diagnosis
GLAAB, Enrico; TREZZI, Jean-Pierre; Greuel et al.
20182018 International Congress of the International Parkinson and Movement Disorders Society
 

Documents


Texte intégral
metabolomics PET machine learning poster 2018.pdf
Postprint Éditeur (3 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Parkinson; neuroimaging; metabolomics; PET; machine learning; integration; differential abundance
Résumé :
[en] Objective: To investigate whether the integration of PET imaging and metabolomics data can provide improved machine learning models for PD diagnosis. Background: The reliable diagnosis of PD can remain challenging, even at the motor stage. PET imaging can be used to confirm the clinical diagnosis. However, limitations in the robustness of predictive features extracted from the data and the costs associated with PET imaging restrict its application. Using blood metabolomics data as an additional information source may provide improved combined diagnostic models and/or an initial filter to decide on whether to apply PET imaging. Methods: Metabolomics profiling of blood plasma samples using gas chromatography coupled to mass spectrometry (GC­MS) was conducted in 60 IPD patients and 15 healthy controls. After pre-processing, these data were compared to neuroimaging data for subsets of the same individuals using FDOPA PET (44 patients and 14 controls) and FDG PET (51 patients and 15 controls). Machine learning models using linear support vector machines were trained on 50% of the data and evaluated on a 50% hold­out test set using Receiver Operating Characteristic (ROC) curves. Next, standardized FDOPA and FDG PET intensity measurements were combined with those from the metabolomics data to build and evaluate sample classification models in the same manner as for the individual datasets. Results: Both for the FDOPA and FDG PET data, the predictive performance given by the area under the ROC curve (AUC) was highest when combining imaging features with those from the metabolomics data (AUC for FDOPA + metabolomics: 0.98; AUC for FDG + metabolomics: 0.91). The performance was generally lower when using only the respective PET attributes (FDOPA: 0.94, FDG: 0.8) or only the metabolomics data (AUC: 0.66).
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Biotechnologie
Sciences du vivant: Multidisciplinaire, généralités & autres
Neurologie
Auteur, co-auteur :
GLAAB, Enrico  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
TREZZI, Jean-Pierre ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Greuel
Jäger, Christian  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
HODAK, Zdenka ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Timmermann, Lars
Tittgemeyer, Marc
Diederich, Nico Jean
Eggers, Carsten
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Combining PET imaging and blood metabolomics data to improve machine learning models for Parkinson’s disease diagnosis
Date de publication/diffusion :
08 octobre 2018
Nom de la manifestation :
2018 International Congress of the International Parkinson and Movement Disorders Society
Lieu de la manifestation :
Esch-sur-Alzette, Luxembourg
Date de la manifestation :
from 05-10-2018 to 09-10-2018
Manifestation à portée :
International
Focus Area :
Systems Biomedicine
Projet FnR :
FNR11651464 - Multi-dimensional Stratification Of Parkinson'S Disease Patients For Personalised Interventions, 2017 (01/07/2018-30/06/2021) - Enrico Glaab
Intitulé du projet de recherche :
Mito-PD, PD-Strat
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 02 décembre 2018

Statistiques


Nombre de vues
297 (dont 29 Unilu)
Nombre de téléchargements
137 (dont 20 Unilu)

citations WoS
 
0

Bibliographie


Publications similaires



Contacter ORBilu