Article (Périodiques scientifiques)
How effective are mutation testing tools? An empirical analysis of Java mutation testing tools with manual analysis and real faults
KINTIS, Marinos; PAPADAKIS, Mike; Papadopoulos, Andreas et al.
2018In Empirical Software Engineering
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Kintis_EMSE_2017.pdf
Postprint Éditeur (6.19 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mutation testing; Fault detection; Tool comparison; Human study; Real faults
Résumé :
[en] Mutation analysis is a well-studied, fault-based testing technique. It requires testers to design tests based on a set of artificial defects. The defects help in performing testing activities by measuring the ratio that is revealed by the candidate tests. Unfortunately, applying mutation to real-world programs requires automated tools due to the vast number of defects involved. In such a case, the effectiveness of the method strongly depends on the peculiarities of the employed tools. Thus, when using automated tools, their implementation inadequacies can lead to inaccurate results. To deal with this issue, we cross-evaluate four mutation testing tools for Java, namely PIT, muJava, Major and the research version of PIT, PITRV, with respect to their fault-detection capabilities. We investigate the strengths of the tools based on: a) a set of real faults and b) manual analysis of the mutants they introduce. We find that there are large differences between the tools’ effectiveness and demonstrate that no tool is able to subsume the others. We also provide results indicating the application cost of the method. Overall, we find that PITRV achieves the best results. In particular, PITRV outperforms the other tools by finding 6% more faults than the other tools combined.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KINTIS, Marinos ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
PAPADAKIS, Mike ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Papadopoulos, Andreas;  Athens University of Economics and Business > Department of Informatics
Valvis, Evangelos;  Athens University of Economics and Business > Department of Informatics
Malevris, Nicos;  Athens University of Economics and Business > Department of Informatics
LE TRAON, Yves ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
How effective are mutation testing tools? An empirical analysis of Java mutation testing tools with manual analysis and real faults
Date de publication/diffusion :
2018
Titre du périodique :
Empirical Software Engineering
ISSN :
1382-3256
eISSN :
1573-7616
Maison d'édition :
Springer Science & Business Media B.V.
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 24 mars 2018

Statistiques


Nombre de vues
239 (dont 9 Unilu)
Nombre de téléchargements
951 (dont 5 Unilu)

citations Scopus®
 
58
citations Scopus®
sans auto-citations
49
OpenCitations
 
37
citations OpenAlex
 
68
citations WoS
 
51

Bibliographie


Publications similaires



Contacter ORBilu