[en] Outer membrane vesicles (OMVs) are released by commensal as well as pathogenic Gram-negative bacteria. These vesicles contain numerous bacterial components, such as proteins, peptidoglycans, lipopolysaccharides, DNA, and RNA. To examine if OMV-associated RNA molecules are bacterial degradation products and/or are functionally active, it is necessary to extract RNA from pure OMVs for subsequent analysis. Therefore, we describe here an isolation method of ultrapure OMVs and the subsequent extraction of RNA and basic steps of RNA-Seq analysis. Bacterial culture, extracellular supernatant concentration, OMV purification, and the subsequent RNA extraction out of OMVs are described. Specific pitfalls within the protocol and RNA contamination sources are highlighted.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Eco-Systems Biology (Wilmes Group) - Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group) ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Microbiologie
Auteur, co-auteur :
HABIER, Janine ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
MAY, Patrick ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Heintz-Buschart, Anna
Ghosal, Anubrata
WIENECKE-BALDACCHINO, Anke ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
Nolte-'t Hoen, Esther N.M
WILMES, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
FRITZ, Joëlle ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Extraction and Analysis of RNA Isolated from Pure Bacteria-Derived Outer Membrane Vesicles
Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–846. https://doi.org/10.1111/j.1365-2958.2006.05272.x
Bonnington KE, Kuehn MJ (2016) Outer membrane vesicle production facilitates LPS remodeling and outer membrane maintenance in salmonella during environmental transitions. MBio 7:e01532-16. https://doi.org/10.1128/MBIO.01532-16
Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008
Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425. https://doi.org/10.1038/nature03925
Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645–2655. https://doi.org/10.1101/gad.1299905
Shen Y, Giardino Torchia ML, Lawson GW et al (2012) Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12:509–520. https://doi.org/10.1016/j.chom.2012.08.004
Park K-S, Choi K-H, Kim Y-S et al (2010) Outer membrane vesicles derived from Escherichia coli induce systemic inflammatory response syndrome. PLoS One 5:e11334. https://doi.org/10.1371/journal.pone.0011334
Bomberger JM, Maceachran DP, B a C et al (2009) Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5:e1000382. https://doi.org/10.1371/journal.ppat.1000382
Koeppen K, Hampton TH, Jarek M et al (2016) A novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles. PLoS Pathog 12:1–22. https://doi.org/10.1371/journal.ppat.1005672
Ghosal A, Upadhyaya BB, Fritz JV et al (2015) The extracellular RNA complement of Escherichia coli. Microbiologyopen 4:252–266. https://doi.org/10.1002/mbo3.235
Biller SJ, Schubotz F, Roggensack SE et al (2014) Bacterial vesicles in marine ecosystems. Science 343:183–186
Sjöström AE, Sandblad L, Uhlin BE, Wai SN (2015) Membrane vesicle-mediated release of bacterial RNA. Sci Rep 5:15329. https://doi.org/10.1038/srep15329
Blenkiron C, Simonov D, Muthukaruppan A et al (2016) Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS One. https://doi.org/10.1371/journal.pone.0160440
Tseng T-T, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9(Suppl 1):S2. https://doi.org/10.1186/1471-2180-9-S1-S2
Bioinformatics B (2014) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Lab H FASTX-Toolkit: FASTQ/A short-reads pre-processing tools. http://hannonlab.cshl.edu/fastx_toolkit/
Anders S, Pyl PT, Huber W (2015) Genome analysis HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638
Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. https://doi.org/10.1186/gb-2010-11-10-r106
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/PREACCEPT-8897612761307401
de Hoon MJ, Taft RJ, Hashimoto T, Kanamori-Katayama M, Kawaji H, Kawano M, Kishima M, Lassmann T, Faulkner GJ, Mattick JS, Daub CO, Carninci P, Kawai J, Suzuki HHY (2010) Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Res 20:257–264
Klimentová J, Stulík J (2015) Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol Res 170:1–9. https://doi.org/10.1016/j.micres.2014.09.006
Youn Kim O, Sil Hong B, Park K-S, et al (2013) Preparation of outer membrane vesicle from Escherichia coli. 3. http://www.bio-protocol.org/e995
Gardiner C, Di Vizio D, Sahoo S et al (2016) Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles 5:32945. https://doi.org/10.3402/jev.v5.32945
Maas SLN, de Vrij J, van der Vlist EJ et al (2015) Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release 200:87–96. https://doi.org/10.1016/j.jconrel.2014.12.041
Lötvall J, Hill AF, Hochberg F et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913. https://doi.org/10.3402/jev.v3.26913