Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
UAV degradation identification for pilot notification using machine learning techniques
MANUKYAN, Anush; OLIVARES MENDEZ, Miguel Angel; BISSYANDE, Tegawendé François D Assise et al.
2016In Proceedings of 21st IEEE International Conference on Emerging Technologies and Factory Automation ETFA 2016
Peer reviewed
 

Documents


Texte intégral
UAV_degradation_identification_ETFA16.pdf
Postprint Éditeur (4.61 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Unmanned Aerial Vehicles; Machine Laerning; kNN; Dynamic Time Warping; Identification of degradation; Supervised learning
Résumé :
[en] Unmanned Aerial Vehicles are currently investigated as an important sub-domain of robotics, a fast growing and truly multidisciplinary research field. UAVs are increasingly deployed in real-world settings for missions in dangerous environments or in environments which are challenging to access. Combined with autonomous flying capabilities, many new possibilities, but also challenges, open up. To overcome the challenge of early identification of degradation, machine learning based on flight features is a promising direction. Existing approaches build classifiers that consider their features to be correlated. This prevents a fine-grained detection of degradation for the different hardware components. This work presents an approach where the data is considered uncorrelated and, using machine learning <br />techniques, allows the precise identification of UAV’s damages.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Automation & Robotics Research Group
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MANUKYAN, Anush ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OLIVARES MENDEZ, Miguel Angel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VOOS, Holger  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
LE TRAON, Yves ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
UAV degradation identification for pilot notification using machine learning techniques
Date de publication/diffusion :
06 septembre 2016
Nom de la manifestation :
21st IEEE International Conference on Emerging Technologies and Factory Automation ETFA 2016
Lieu de la manifestation :
Berlin, Allemagne
Date de la manifestation :
from 06-09-2016 to 09-09-2016
Manifestation à portée :
International
Titre du périodique :
Proceedings of 21st IEEE International Conference on Emerging Technologies and Factory Automation ETFA 2016
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 06 novembre 2017

Statistiques


Nombre de vues
270 (dont 23 Unilu)
Nombre de téléchargements
427 (dont 7 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
5
citations OpenAlex
 
5
citations WoS
 
0

Bibliographie


Publications similaires



Contacter ORBilu