Pas de texte intégral
Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
Mumford curves covering p-adic Shimura curves and their fundamental domains
AMOROS CARAFI, Laia; Milione, Piermarco
2016
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
Shimura curves; Mumford curves; p-adic fundamental domains
Résumé :
[en] We give an explicit description of fundamental domains associated to the p-adic uniformisa- tion of families of Shimura curves of discriminant Dp and level N ≥ 1, for which the one-sided ideal class number h(D,N) is 1. The obtained results generalise those in [19, Ch. IX] for Shimura curves of discriminant 2p and level N = 1. The method we present here enables us to find Mumford curves covering Shimura curves, together with a free system of generators for the associated Schottky groups, p-adic good fundamental domains and their stable reduction- graphs. This is based on a detailed study of the modular arithmetic of an Eichler order of level N inside the definite quaternion algebra of discriminant D, for which we generalise classical results of Hurwitz [20]. As an application, we prove general formulas for the reduction-graphs with lengths at p of the considered families of Shimura curves.
Disciplines :
Mathématiques
Auteur, co-auteur :
AMOROS CARAFI, Laia ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Milione, Piermarco;  Aalto University
Langue du document :
Anglais
Titre :
Mumford curves covering p-adic Shimura curves and their fundamental domains
Date de publication/diffusion :
17 août 2016
Disponible sur ORBilu :
depuis le 20 février 2017

Statistiques


Nombre de vues
94 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu