Article (Périodiques scientifiques)
TTCA: an R package for the identification of differentially expressed genes in time course microarray data
ALBRECHT, Marco; Stichel, Damian; Müller, Benedikt et al.
2017In BMC Bioinformatics, 18 (1), p. 33
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
BMC bioinformatics TTCA.pdf
Postprint Éditeur (1.41 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Background: The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The existing methods for detecting significant expression dynamics often fail when the expression dynamics show a large heterogeneity. Moreover, these methods often cannot cope with irregular and sparse measurements. Results: The method proposed here is specifically designed for the analysis of perturbation responses. It combines different scores to capture fast and transient dynamics as well as slow expression changes, and performs well in the presence of low replicate numbers and irregular sampling times. The results are given in the form of tables including links to figures showing the expression dynamics of the respective transcript. These allow to quickly recognise the relevance of detection, to identify possible false positives and to discriminate early and late changes in gene expression. An extension of the method allows the analysis of the expression dynamics of functional groups of genes, providing a quick overview of the cellular response. The performance of this package was tested on microarray data derived from lung cancer cells stimulated with epidermal growth factor (EGF). Conclusion: Here we describe a new, efficient method for the analysis of sparse and heterogeneous time course data with high detection sensitivity and transparency. It is implemented as R package TTCA (transcript time course analysis) and can be installed from the Comprehensive R Archive Network, CRAN. The source code is provided with the Additional file 1.
Disciplines :
Génétique & processus génétiques
Auteur, co-auteur :
ALBRECHT, Marco ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit ; Universität Heidelberg > Institut für wissenschaftliches Rechnen
Stichel, Damian
Müller, Benedikt
Merkle, Ruth
Sticht, Carsten
Gretz, Norbert
Klingmüller, Ursula
Breuhahn, Kai
Matthäus, Franziska
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
TTCA: an R package for the identification of differentially expressed genes in time course microarray data
Date de publication/diffusion :
14 janvier 2017
Titre du périodique :
BMC Bioinformatics
eISSN :
1471-2105
Maison d'édition :
BioMed Central
Volume/Tome :
18
Fascicule/Saison :
1
Pagination :
33
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Disponible sur ORBilu :
depuis le 31 janvier 2017

Statistiques


Nombre de vues
174 (dont 22 Unilu)
Nombre de téléchargements
157 (dont 5 Unilu)

citations Scopus®
 
13
citations Scopus®
sans auto-citations
13
OpenCitations
 
13
citations OpenAlex
 
20
citations WoS
 
13

Bibliographie


Publications similaires



Contacter ORBilu