[en] Given a second order partial differential operator L satisfying the strong Hörmander condition with corresponding heat semigroup P_t, we give two different stochastic representations of dP_t f for a bounded smooth function f. We show that the first identity can be used to prove infinite lifetime of a diffusion of L/2, while the second one is used to find an explicit pointwise bound for the horizontal gradient on a Carnot group. In both cases, the underlying idea is to consider the interplay between sub-Riemannian geometry and connections compatible with this geometry.
Disciplines :
Mathématiques
Auteur, co-auteur :
Grong, Erlend; Université Paris-Sud 11 > Laboratoire des Signaux et Système
THALMAIER, Anton ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Stochastic completeness and gradient representations for sub-Riemannian manifolds