Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Superimposed Training based Estimation of Sparse MIMO Channels for Emerging Wireless Networks
Mansoor, Babar; Nawaz, Syed Junaid; Amin, Bilal et al.
2016In Proceedings of ICT 2016
Peer reviewed
 

Documents


Texte intégral
ICT2016_superimposedtraining.pdf
Postprint Auteur (176.38 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Superimposed training; Channel estimation; MIMO; First order statistics; Compressed sensing
Résumé :
[en] Multiple-input multiple-output (MIMO) systems constitute an important part of todays wireless communication standards and these systems are expected to take a fundamental role in both the access and backhaul sides of the emerging wireless cellular networks. Recently, reported measurement campaigns have established that various outdoor radio propagation environments exhibit sparsely structured channel impulse response (CIR). We propose a novel superimposed training (SiT) based up-link channels’ estimation technique for multipath sparse MIMO communication channels using a matching pursuit (MP) algorithm; the proposed technique is herein named as superimposed matching pursuit (SI-MP). Subsequently, we evaluate the performance of the proposed technique in terms of mean-square error (MSE) and bit-error-rate (BER), and provide its comparison with that of the notable first order statistics based superimposed least squares (SI-LS) estimation. It is established that the proposed SI-MP provides an improvement of about 2dB in the MSE at signal-to-noise ratio (SNR) of 12dB as compared to SI-LS, for channel sparsity level of 21.5%. For BER = 10^−2, the proposed SI-MP compared to SI-LS offers a gain of about 3dB in the SNR. Moreover, our results demonstrate that an increase in the channel sparsity further enhances the performance gain
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Mansoor, Babar;  COMSATS Institute of Information Technology, Islamabad, Pakistan
Nawaz, Syed Junaid;  COMSATS Institute of Information Technology, Islamabad, Pakistan.
Amin, Bilal;  COMSATS Institute of Information Technology, Lahore, Pakistan.
SHARMA, Shree Krishna ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Patwary, Mohammad;  Staffordshire University, Stoke-on-trent, UK > FCES
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Superimposed Training based Estimation of Sparse MIMO Channels for Emerging Wireless Networks
Date de publication/diffusion :
mai 2016
Nom de la manifestation :
23rd International Conference on Telecommunications (ICT)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Thessaloniki, Grèce
Date de la manifestation :
16-06-2016 to 18-06-2016
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of ICT 2016
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 03 septembre 2016

Statistiques


Nombre de vues
101 (dont 2 Unilu)
Nombre de téléchargements
175 (dont 1 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
6

Bibliographie


Publications similaires



Contacter ORBilu