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Abstract—Multiple-input multiple-output (MIMO) systems
constitute an important part of todays wireless communication
standards and these systems are expected to take a fundamental
role in both the access and backhaul sides of the emerging
wireless cellular networks. Recently, reported measurement cam-
paigns have established that various outdoor radio propaga-
tion environments exhibit sparsely structured channel impulse
response (CIR). We propose a novel superimposed training
(SiT) based up-link channels’ estimation technique for multi-
path sparse MIMO communication channels using a matching
pursuit (MP) algorithm; the proposed technique is herein named
as superimposed matching pursuit (SI-MP). Subsequently, we
evaluate the performance of the proposed technique in terms of
mean-square error (MSE) and bit-error-rate (BER), and provide
its comparison with that of the notable first order statistics based
superimposed least squares (SI-LS) estimation. It is established
that the proposed SI-MP provides an improvement of about 2dB
in the MSE at signal-to-noise ratio (SNR) of 12dB as compared to
SI-LS, for channel sparsity level of 21.5%. For BER = 10−2, the
proposed SI-MP compared to SI-LS offers a gain of about 3dB
in the SNR. Moreover, our results demonstrate that an increase
in the channel sparsity further enhances the performance gain.

Keywords: MIMO, sparse, superimposed training, first-

order statistics, compressed sensing, matching pursuit, channel

estimation

I. INTRODUCTION

The emerging fifth generation (5G) cellular networks are

generally envisioned to deliver a decrease in the latency in

the order of tens, an increase in energy efficiency in the

order of hundreds, and an increase in system capacity in

the order of thousands [1, 2]. To attain these targets, the

emerging 5G cellular networks are thought to adopt multi-

tier cellular architectures with macrocells, dense small sized

cells, relays, and device-to-device (D2D) communication links.

A large amount of antennas employed at the cellular base

stations (BSs) has the potential to offer numerous advantages

in terms of high data rates, improved spectral efficiency,
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support for a large number of users, low transmit power,

high order diversity, improved range of coverage, and better

interference suppression. Therefore, such massive multiple-

input multiple-output (MIMO) systems have recently received

significant attention as a potential candidate for providing

promising solutions for both wireless access and backhaul.

Further, a large amount of under-utilized millimeter wave

(mmWave) spectrum is being investigated for massive MIMO

systems to provide the requisite band in order to address

high capacity demands of wireless backhaul [2] and wireless

cellular network [3].

Various empirical results have established that mmWave

massive MIMO channels exhibit spatially sparse structure [4],

where only a few dominant paths exist (typically, 3 ∼ 5
multipath). Moreover, in various outdoor radio propagation

environments, the impulse response of the channel is observed

as sparse [5, 6]. For example, the channel impulse response

vector exhibits sparse structure in a typical cellular communi-

cation environment with only a few dominant distant scatterers

[6], aeronautical communication channels [7], wideband high

frequency communication channels [8], and underwater acous-

tic communication channels [9], etc. Such sparse propagation

channels have only a few dominant multipath components that

are largely separated in the delay domain, which makes the

estimation of channel a challenging task [10]. However, a prior

knowledge about the channel sparsity can assist in obtaining

more accurate channel estimates.

In the literature, there exist numerous channel estimation

techniques that can be broadly categorized into blind [11–

13], semi-blind [14–16], and training sequence based [17–19].

Depending upon the channel’s time or frequency selectiveness,

the training and information sequences can be multiplexed in

time or/and frequency domain. Consequently, superimposed

training (SiT) sequence based methods have recently gained

popularity for the purpose of channel impulse response (CIR)

estimation [6, 20–22]. In SiT based techniques, a known

pilot sequence is superimposed (arithmetically added) over

the data sequence, thus it avoids the overhead on data rate

by preventing any use of dedicated time/frequency slots for



the training sequence [22]. These techniques are not only

spectrally efficient but also can effectively track the channel

variations to combat any sudden blockages.

Over the past few years, compressed sensing (CS) theory

[23–25], that exploits the sparse nature of the signals, has

gained significant attention. Furthermore, CS has been suc-

cessfully employed to estimate the CIR in wireless communi-

cations - see e.g. [26–28]. In [29], authors have proposed an

SiT based channel estimation technique based on the first order

statistics of the data for the case of single-input multiple-output

(SIMO) time-invariant channels. In [6], an SiT technique that

uses compressed sensing and first order statistics of the data,

has been proposed for the estimation of sparse multipath chan-

nels for single-input single-output (SISO) systems. Among

several available reconstruction algorithms used in compressed

sensing, the matching pursuit (MP) algorithm exploits the

available knowledge of sparse structure of the channel and

provides a reasonably good estimate with less computational

complexity [5]. Moreover, an SiT based technique for un-

derwater acoustic orthogonal frequency division multiplexing

(OFDM) communication systems using the MP algorithm, has

been proposed in [10], to obtain the estimate of sparse CIR

with a reduced peak-to-average ratio of OFDM channels.

This paper propose a novel SiT based technique for es-

timation of frequency selective sparse MIMO communication

channels. A superimposed training based matching pursuit (SI-

MP) algorithm for the estimation of such sparse multipath

MIMO channels is proposed. In order to demonstrate the

usefulness of the proposed technique, a detailed analysis

based on bit-error-rate (BER) and mean-square-error (MSE)

performance of the system is presented. Moreover, an MSE

and BER based comparison of the proposed technique with

the superimposed least square (SI-LS) technique devised in

[22] is presented.

The rest of this paper is organised as follows: the considered

communication system model is presented in Sec. II. The pro-

posed SI-MP technique for sparse MIMO channel estimation

is presented in Sec. III. Details of the equalizer used in the

simulations is presented in Sec. IV. Simulation results along

with a thorough performance analysis is presented in Sec. V.

Finally, Sec. VI presents the conclusion.

Notations: Boldface upper case letters, e.g., H represent

matrices. Boldface small case letters represent vectors, e.g.,

h. Scalar quantities are denoted with small case italic letters,

e.g., h. Hermitian transpose of a vector is represented as [.]∗.

II. MULTIUSER MIMO COMMUNICATION SYSTEM MODEL

The block diagram of the considered multiuser MIMO com-

munication system model is shown in Fig. 1. Let N and M be

the number of user terminals (transmitters) and receive antenna

array elements, respectively. The signal transmitted from the

users propagates through sparse multipath MIMO communi-

cation channels with Q and L being the non-zero and the total

number of resolvable multipath taps, respectively. Channel

estimator (CE) is implemented using the first-order statistics

based channel estimation technique in [22] and the proposed
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Fig. 1: Block diagram of the considered multiuser MIMO

communication system.

superimposed training sequence based matching pursuit (SI-

MP), detailed later in Section III. Subsequently, training-

sequence effect remover (TER) eliminates the contribution of

training sequence after estimation of the CIR and feeds the

equalizer with a regularized version of the received signal.

Next, a linear minimum mean square equalizer (LMMSE) is

implemented to estimate the transmitted information sequence.

Let bn = [bn(0), bn(1), · · · , bn(K − 1)]∗ represent a zero-

mean information sequence such that bn is mutually indepen-

dent for each of the nth user. A known deterministic and pe-

riodic training sequence cn = [cn(0), cn(1), · · · , cn(K−1)]∗,

having a period P such that cn(k) = cn(k + aP ) for all

integers k and a, is superimposed (added) over the information

sequence bn. The superimposed information and training

sequences for nth user terminal is given by,

xn = bn + cn. (1)

The sequence xn = [xn(0), xn(1), · · · , xn(K − 1)]∗ is

transmitted over the sparse MIMO channel such that the

impulse response between nth transmitter and mth receiver is

given by hnm = [h0
nm, h1

nm, · · · , hL−1
nm ]∗. The signal received

at time instant k by the mth antenna element of receive array

is given by the following equation,

ym(k) =
∑N

n=1

∑L−1
l=0 hl

nmxn(k − l) + ηm(k), (2)

where ηm(k) denotes the kth sample of zero mean additive

white Gaussian noise (AWGN) with variance σ2
η . The signal

received by all the antenna elements of the receive array at

time instant k is y(k) = [y1(k), y2(k), · · · , yM (k)]∗ and is

given by,

y(k) =
∑L−1

l=0 Hlx(k − l) + η(k), (3)

where x(k − l) = [x1(k − l), x2(k − l), · · · , xN (k − l)]
∗
,

η(k) = [η1(k), η2(k), · · · , ηM (k)]
∗
, and H l represents M ×

N channel matrix for a specific delay tap l. The temporal

sampling yields the following representation of the received

signal,

s(k) = [y∗(k + L− 1),y∗(k + L− 2), · · · ,y∗(k)]∗ ,



s(k) = Hv(k) + η̆(k), (4)

where the vectors v(k) and η̆(k) are given by,

v(k) = [x∗(k + L− 1),x∗(k + L− 2), · · · ,x∗(k)]∗ , (5)

η̆(k) = [η∗(k + L− 1),η∗(k + L− 2), · · · ,η∗(k)]∗ . (6)

III. PROPOSED SIT BASED MIMO CHANNEL ESTIMATION

For the sake of completeness, a brief review of first order

statistics of MIMO channels and a notable least square channel

estimation method are presented in Sec. III-A and III-B,

respectively. The proposed SI-MP channel estimation method

is presented in Sec. III-C.

A. First-Order Statistics

Each user (transmitter) is assigned with a distinct cycle

frequency. Suppose for a specific user n, the training sequence

cn(k) is periodic. The period of the training sequence is

P = P̃N , where P̃ ∈ Z
+. The training sequence cn(k) is

given as,

cn(k) =
P−1∑
i=0

ci,n ej(2πi/P )k, ∀k, (7)

where j =
√−1 and

ci,n =
1

P

P−1∑
k=0

cn(k) e
−j(2πi/P )k. (8)

In (8), cn(k) is chosen such that only P̃ coefficients out of

total P are non zero, therefore, cn(k) can be calculated as,

cn(k) =

P̃−1∑
i=0

c′i,n ejαi,nk, ∀k, (9)

where αi,n = 2π(iN +n−1)/P . To compute cn(k), we need

a periodic base sequence c̄o(k) that has a period of P̃ , [22],

in such a way that,

c̄i,o =
1

P̃

P̃−1∑
k=0

c̄o(k) e
−j(2πi/P̃ )k. (10)

In order to define the training sequence c̄1(n) having a

period P , c̄o(k) is repeated N times. The training sequence

of a specific transmitter n can thus be defined as follows [22],

cn(k) = σcn c̄1(k) e
j(2π/P )(n−1)k for n = 1, 2, ..., N. (11)

The expectation of the received signal ym(k) at the re-

ceiver’s mth antenna element can be calculated as:

E{ym(k)} =

N∑
n=1

P̃−1∑
i=0

[
L−1∑
l=0

c′i,nh
l
nme−jαi,nl

]
ejαi,nk. (12)

For n1 �= n2, we have αi1,n1 �= αi2,n2 for any i1, i2 ∈
0, 1, ..., P̃ − 1. Let dnm = [dnm,0, dnm,1, · · · , dnm,(P̃−1)]

∗,

where dnm,i is given by,

dnm,i =
L−1∑
l=0

c′i,nh
l
nme−jαi,nl. (13)

The mean square consistent estimate d̂nm =
[d̂nm,0, d̂nm,1, · · · , d̂nm,(P̃−1)]

∗ of dnm can be obtained, by

computing its coefficient as given below,

d̂nm,i =
1

T

T−1∑
k=0

ym(k) e−jαi,nk, (14)

where T is the number of received symbols, as T → ∞ , the

d̂nm,i → dnm,i. The relationship given in (14) can also be

written in a vector form as,

d̂nm = Cnhnm, (15)

where Cn can be obtained as

Cn = diag {c′0,n, c′1,n, · · · , c′(P̃−1),n
}Vn, (16)

where Vn can be found as,

Vn =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
1 e−jα1,n · · · e−jα1,nL

1 e−jα2,n · · · e−jα2,nL

...
...

...
...

1 e−jα(P̃−1),n · · · e−jα(P̃−1),nL

⎤
⎥⎥⎥⎥⎥⎦. (17)

B. Least Squares
The least square estimate [22] of the channel can thus be

obtained from (15) in the following way

ĥnm = (C∗
nCn)

−1C∗
nd̂nm. (18)

For non-zero mean noise, the channel estimate can be

obtained by setting P̃ ≥ L + 1, and by omitting the first

row from Cn and d̂nm,0 from d̂nm.

C. Proposed SI-MP
The error in the estimate d̂nm,i of dnm,i can be realized by

substituting ym(k) from (2) in (14). The simplified solution

for d̂nm,i can be expressed as under,

d̂nm,i = dnm,i + εnm,i, (19)

where εnm,i represents the error in the estimate of dnm,i. The

estimation error εnm,i contains contributions from additive

noise (η̃nm,i), interference from superimposed information se-

quence of all the transmitters (b̃nm,i), and the interference from

training sequence of cross channels (c̃ñm,i). The estimation

error is thus given by, εnm,i = c̃ñm,i + b̃nm,i + η̃nm,i; where,

c̃ñm,i =
1
T

∑T−1
k=0

[∑N
ñ = 1
ñ �= n

∑L−1
l=0 hl

ñmcñ(k − l)

]
e−jαi,ñk,

(20)

b̃nm,i =
1
T

∑T−1
k=0

[∑N
n=1

∑L−1
l=0 hl

nmbn(k − l)
]
e−jαi,nk,

(21)

η̃nm,i =
1
T

∑T−1
k=0 ηm(k)e−jαi,nk. (22)

Ignoring the inherent error εnm,i in (19) leads to a non-realistic

estimate of the channels. Moreover, the SI-LS estimation

technique presented in the previous section is not optimized for

sparse multipath channels. To address this issue, we propose

a novel SI-MP algorithm.



SI-MP Algorithm: Since the channel under consideration is

sparse, a large number of taps in the channel vector hnm is

either zero or below the noise floor. Thus, a MP algorithm

can be employed to estimate the sparse channel as proposed

in [5]. Hence, to estimate the channels from the model in (15),

the positions of non-zero taps are first determined and channel

estimation is then carried out only for these specific non-zero

positions. We describe the proposed SI-MP algorithm in the

following paragraphs.

In (15), both Cn and dnm are known, therefore, dnm can

be expanded as,

dnm = cn,oh
0
nm + cn,1h

1
nm + cn,2h

2
nm + . . .+ cn,P̃−1h

P̃−1
nm .

(23)

where cn,i is the ith column vector of Cn. First, find the

column in matrix Cn = [cn,0, cn,1, . . . , cn,(P̃−1)] that is best

aligned with the output vector d̂nm; let this vector be denoted

by cqp . Let Q be the number of non-zero taps among a total of

L channel taps. The output vector d̂nm is spanned by total Q
columns of Cn that actually correspond to Q non-zero entries

of the sparse channel hnm. By projecting all columns of Cn

on d̂nm, we can find the best aligned column of Cn with

d̂nm that will correspond to the position of one of the non-

zero entries of hnm. In this way, we can find the location

of non-zero entries present in the sparse channel hnm in each

iteration. Once the non-zero tap position of hnm is determined,

the value at that tap position can be found. The algorithm

proceeds in the same way for each iteration. In order to find

the non-zero tap positions of hnm in the qth iteration, the

projection of Cn along d̂nm is found as,

γq = arg max
j = 0, . . . , P̃ − 1

j �= γq−1

| c∗n,jd̃nm,q−1 |2
‖ cn,j ‖2�2

, (24)

where ‖ . ‖�2 represents the �2 norm operation and cn,j
represents the jthcolumn of Cn. In the qth iteration, γq
represents the index of the best aligned column of Cn with

d̂nm and corresponds to one of the non-zero taps of hnm.

The projection of Cn in each iteration is computed along the

residual error vector of previous iteration d̃nm,q−1. For the

very first iteration, the residual error vector is d̃nm,o = d̂nm

and in the preceding iterations, its value is obtained as,

d̃nm,q = d̃nm,q−1 − c∗n,γq
d̃nm,q−1

‖ cn,γq
‖2�2

cn,γq
. (25)

The estimate of a non-zero tap of the channel h̃
γq
nm at

position γq can thus be obtained as,

h̃γq
nm =

c∗γq
d̃q−1

‖ cγq ‖2�2
. (26)

The iterations continue until all the non-zero taps in h̃nm are

determined, or when the error residual in a specific iteration

becomes less than agiven threshold, i.e., ‖ d̃q ‖ < ε. In this

algorithm, only non-zero taps of the sparse channel hnm are

estimated.

IV. LMMSE EQUALIZER FOR THE PROPOSED METHOD

The superimposed training sequence of each user terminal

is known to the receiver, and this training sequence also gets

convolved with the CIR along with the information sequence.

Thus, before passing the signal to the equalizer’s input, we

need to remove the effect of the training sequence from the

signal received at each antenna element of the receiver. TER

performs this operation (as depicted in Fig. 1) in the following

manner,

ỹm(k) = ym(k)−
N∑

n=1

L−1∑
l=0

h̆l
nm cn(k − l), (27)

where h̆l
nm represents the estimate of lth tap of channel from

nth user terminal to mth antenna element of the receiver. The

estimate of the channels can be obtained by using the tech-

niques discussed in the previous sections, i.e., h̆nm = ĥnm for

the conventional SI-LS or h̆nm = h̃nm for the proposed SI-

MP. Once the effect of training sequence is removed, the signal

is fed to the equalizer’s input which estimates the information

sequence of each user. For, the equalizers part at mth element

of the receiver, the optimal equalizer’s weights wm can be

obtained as in [30], and are given by,

wnm =
(
H̆H̆∗ + 2σ2

nI
)−1

H̆
∣∣∣
(m−1)(Le+L−1)+(τ+1)

,

(28)

where Le denotes the length of equalizer, I denotes the Le×Le

identity matrix, τ is the decision delay of the equalizer’s

mappers and H̆|i is the ith column of H̆. The convolutional

matrix H̆, having dimensions nf × (Le+L− 1), is computed

from the estimated channels’ impulse response vectors as

below,

H̆n,m =

⎡
⎢⎢⎢⎢⎣

h̆0
n,m h̆1

n,m · · · h̆L−1
n,m 0 · · · 0

0 h̆0
n,m h̆1

n,m · · · h̆L−1
n,m

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 h̆0
n,m h̆1

n,m · · · h̆L−1
n,m

⎤
⎥⎥⎥⎥⎦ .

(29)

Subsequently, the composite convolutional matrix H̆ of the

MIMO system is given as,

H̆ =

⎡
⎢⎢⎢⎣

H̆1,1 H̆1,2 · · · H̆1,M

H̆2,1 H2,2 · · · H̆2,M

...
... · · ·

...

H̆L,1 H̆L,2 · · · H̆L,M

⎤
⎥⎥⎥⎦ . (30)

Next, the estimate of transmitted information sequence from

the nth transmitter can be obtained as,

b̃n =

M∑
m=1

Le−1∑
i=0

wi
nmỹm(k − i). (31)

The output of the equalizer, b̃n, is then fed as an input to

a decision mapper, as shown in Fig. 1, that performs mapping

of the symbols according to the used modulation scheme with

the decoded symbols represented by b̂n.
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(b) BER based comparison.

Fig. 2: MSE and BER based comparative analysis between SI-

LS and the proposed SI-MP, (Monte= 1000 runs, K = 900,

L = 14, Q = 3, M = N = 3, σ2
c/σ

2
b = 0.25, τ = 5, and

Le = 11).

V. RESULTS AND DISCUSSION

In this section, a detailed numerical analysis of simulation

results is presented by considering the normalized chan-

nel MSE (NCMSE) and BER as performance metrics. The

NCMSE before Monte Carlo averaging is defined as,

NCMSE =

∑M
m=1

∑N
n=1

∑L−1
l=0

∣∣∣ĥl
nm − hl

nm

∣∣∣2∑M
m=1

∑N
n=1

∑L−1
l=0 |hl

nm|2
, (32)

where |.| represents the magnitude.

We consider a 3 × 3 MIMO system with time invariant

and frequency selective sub channels. The realization of all

the channels hnm is independently generated for each Monte

Carlo run, by keeping a fixed level of sparsity, Q/L. The

support (non-zero delay positions) of impulse response vector

for all the channels is drawn independently from uniform dis-

tribution. The values of non-zero taps of a channel hnm follow

a zero-mean Gaussian distribution. The number of resolvable

multipath components is taken equal for all the channels, fixed

at L = 14 with variance 1/(M(L + 1)). A periodic training

sequence is generated following the m−sequence approach

presented in [22]. A periodic base sequence with period

P̃ = 15 is taken fixed as, {-1,-1,-1,1,1,1,1,-1,1,-1,1,1,-1,-1,1},

for all the simulation results. Zero mean white Gaussian noise

is independently generated at each receiver satisfying a certain

signal-to-noise (SNR) ratio. The SNR at mth receiver is de-

fined as the ratio between variance of received signal σ2
ym

and

variance of noise σ2
η , i.e., SNRm = σ2

ym
/σ2

η . The information

sequence of each transmitter is considered to be a zero-mean

BPSK modulated signal i.e., bn ∈ {1,−1}. A MMSE equal-

izer (explained in previous section) is implemented to obtained

estimate of information sequences at the receiver. The

performance comparison, in terms of NCMSE and BER, of

the first-order statistics based channel estimation technique

(SI-LS) and the proposed channel estimation technique using

matching pursuit algorithm (SI-MP) is shown in Fig. 2. It can

be observed that the proposed technique outperforms SI-LS

technique in terms of both NCMSE and BER. For the case of

NCMSE, we have a performance gain of 2 dB at an SNR of 10
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(b) Variation in TIR.

Fig. 3: Effects of variation in TIR and channel sparsity on

MSE performance of CE, (Monte= 1000 runs, K = 900, and

M = N = 3).

dB for Q/L = 3/14. For BER= 10−2, the proposed technique

gives a performance gain of about 3 dB as compared to SI-

LS. This performance gain provided by the proposed technique

arises due to the exploitation of the sparse nature of MIMO

channels.

It can be depicted from Fig. 3 that the proposed technique

performs better due to the use of prior knowledge about

the sparse nature of the channel. To demonstrate the effect

of variation in the channel’s sparsity (i.e., Q/L), the MSE

is plotted against SNR for different values of sparsity (i.e.,

Q/L = 2/14, 3/14, and 5/14) in Fig. 3(a) for the proposed

SI-MP. For these plots, the training to information ratio (TIR)

σ2
c/σ

2
b is set to unity. It can be observed that the performance

of the proposed scheme increases as the channels become more

and more sparse. To demonstrate the effect of variation in TIR

(σ2
c/σ

2
b ), the MSE versus SNR is plotted for different values of

TIR by keeping the channel sparsity parameter Q/L = 4/14
fixed, as shown in Fig. 3(b). It can be noted that by increasing

the power of the training sequence, the MSE performance of

the channel improves. However, decreasing the contribution

of information sequence has an adverse effect on the BER

performance of the system while decoding the information

sequence, see Fig. 4. Therefore, the choice of an optimum

value for TIR is required to satisfy a good tradeoff between

MSE and BER performance.

VI. CONCLUSION

A novel superimposed training sequence based estimation

technique using a matching pursuit algorithm has been pro-

posed for frequency-selective and time-invariant sparse MIMO

communication channels. A detailed analysis based on the

simulation results has been presented in terms of MSE and

BER performance metrics. Furthermore, the effect of variation

in the channels’ sparsity level and the training to information

power ratio has been investigated. It has been established that

the proposed SI-MP technique outperforms the traditional SI-

LS technique found in existing literature, for the case of sparse

MIMO channels. It has been observed that the performance of

the estimation technique is a function of degree of sparsity in



� � �� �� ��
��

�#

��
��

��
��

��
�

�$��%&'(

'
��
��
��
)
��
�
	�
�
%'

�
�
(

�

�

�����
�
�.�0��

�����
�
�.�0��

�����
�
�.�0 �

Fig. 4: Effect of variations in TIR on the BER performance,

(Monte= 1000 runs, K = 1500, Q/L = 3/6, M = N = 3,

τ = 5, and Le = 8).

the CIR. Hence can be improved with dynamic measure of the

degree of sparsity at the receiver.

In our future work, we plan to extend this work for the

estimation of time-variant sparse MIMO channels with SiT

sequence.
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