Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
DSCo-NG: A Practical Language Modeling Approach for Time Series Classification
LI, Daoyuan; BISSYANDE, Tegawendé François D Assise; KLEIN, Jacques et al.
2016In The 15th International Symposium on Intelligent Data Analysis
Peer reviewed
 

Documents


Texte intégral
li2016dsco-ng.pdf
Preprint Auteur (6.3 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] The abundance of time series data in various domains and their high dimensionality characteristic are challenging for harvesting useful information from them. To tackle storage and processing challenges, compression-based techniques have been proposed. Our previous work, Domain Series Corpus (DSCo), compresses time series into symbolic strings and takes advantage of language modeling techniques to extract from the training set knowledge about different classes. However, this approach was flawed in practice due to its excessive memory usage and the need for a priori knowledge about the dataset. In this paper we propose DSCo-NG, which reduces DSCo’s complexity and offers an efficient (linear time complexity and low memory footprint), accurate (performance comparable to approaches working on uncompressed data) and generic (so that it can be applied to various domains) approach for time series classification. Our confidence is backed with extensive experimental evaluation against publicly accessible datasets, which also offers insights on when DSCo-NG can be a better choice than others.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LI, Daoyuan ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
LE TRAON, Yves ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
DSCo-NG: A Practical Language Modeling Approach for Time Series Classification
Date de publication/diffusion :
octobre 2016
Nom de la manifestation :
The 15th International Symposium on Intelligent Data Analysis
Date de la manifestation :
from 13-10-2016 to 15-10-2016
Manifestation à portée :
International
Titre de l'ouvrage principal :
The 15th International Symposium on Intelligent Data Analysis
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 07 juillet 2016

Statistiques


Nombre de vues
262 (dont 25 Unilu)
Nombre de téléchargements
404 (dont 7 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
3

Bibliographie


Publications similaires



Contacter ORBilu