[en] Due to the complex clinical picture of Parkinson’s disease (PD), the reliable diagnosis of patients is still challenging. A promising approach is the structural characterization of brain areas affected in PD by diffusion magnetic resonance imaging (dMRI). Standard classification methods depend on an accurate non-linear alignment of all images to a common reference template, and are challenged by the resulting huge dimensionality of the extracted feature space. Here, we propose a novel diagnosis pipeline based on the Fisher vector algorithm. This technique allows for a precise encoding into a high-level descriptor of standard diffusion measures like the fractional anisotropy and the mean diffusivity, extracted from the regions of interest (ROIs) typically involved in PD. The obtained low dimensional, fixed-length descriptors are independent of the image alignment and boost the linear separability of the problem in the description space, leading to more efficient and accurate diagnosis. In a test cohort of 50 PD patients and 50 controls, the implemented methodology outperforms previous methods when using a logistic linear regressor for classification of each ROI independently, which are subsequently combined into a single classification decision.
Centre de recherche :
Luxembourg Centre for Systems Biomedicine (LCSB): Integrative Cell Signalling (Skupin Lab) Luxembourg Centre for Systems Biomedicine (LCSB): Experimental Neurobiology (Balling Group) Luxembourg Centre for Systems Biomedicine (LCSB): Machine Learning (Vlassis Group)
Disciplines :
Neurologie Sciences informatiques
Auteur, co-auteur :
SALAMANCA MINO, Luis ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
VLASSIS, Nikos ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
BERNARD, Florian ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
SKUPIN, Alexander ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Improved Parkinson’s disease classification from diffusion MRI data by Fisher vector descriptors
Date de publication/diffusion :
octobre 2015
Nom de la manifestation :
Medical Image Computing and computer assisted intervention
Lieu de la manifestation :
Munich, Allemagne
Date de la manifestation :
October, 5-9
Manifestation à portée :
International
Titre de l'ouvrage principal :
Improved Parkinson’s disease classification from diffusion MRI data by Fisher vector descriptors
Pagination :
119-126
Peer reviewed :
Peer reviewed
Projet FnR :
FNR9169303 - Development Of Novel Machine Learning Methodologies For Early Parkinson's Disease Diagnosis From Multi-modal Mri, 2014 (01/03/2015-28/02/2017) - Luis Salamanca Miño
Intitulé du projet de recherche :
Development of Novel Machine Learning methodologies for early Parkin- son’s disease diagnosis from multi-modal MRI