Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Improved Parkinson’s disease classification from diffusion MRI data by Fisher vector descriptors
SALAMANCA MINO, Luis; VLASSIS, Nikos; DIEDERICH, Nico et al.
2015In Improved Parkinson’s disease classification from diffusion MRI data by Fisher vector descriptors
Peer reviewed
 

Documents


Texte intégral
paper1223_defSubmitted.pdf
Preprint Auteur (363.17 kB)
Télécharger
Annexes
VideoPosterBidiMICCAI.mp4
(53.62 MB)
Explanatory video of the paper
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Neurodegenerative diseases; Diagnosis; Diffusion magnetic resonance imaging; Machine Learning; Feature Extraction
Résumé :
[en] Due to the complex clinical picture of Parkinson’s disease (PD), the reliable diagnosis of patients is still challenging. A promising approach is the structural characterization of brain areas affected in PD by diffusion magnetic resonance imaging (dMRI). Standard classification methods depend on an accurate non-linear alignment of all images to a common reference template, and are challenged by the resulting huge dimensionality of the extracted feature space. Here, we propose a novel diagnosis pipeline based on the Fisher vector algorithm. This technique allows for a precise encoding into a high-level descriptor of standard diffusion measures like the fractional anisotropy and the mean diffusivity, extracted from the regions of interest (ROIs) typically involved in PD. The obtained low dimensional, fixed-length descriptors are independent of the image alignment and boost the linear separability of the problem in the description space, leading to more efficient and accurate diagnosis. In a test cohort of 50 PD patients and 50 controls, the implemented methodology outperforms previous methods when using a logistic linear regressor for classification of each ROI independently, which are subsequently combined into a single classification decision.
Centre de recherche :
Luxembourg Centre for Systems Biomedicine (LCSB): Integrative Cell Signalling (Skupin Lab)
Luxembourg Centre for Systems Biomedicine (LCSB): Experimental Neurobiology (Balling Group)
Luxembourg Centre for Systems Biomedicine (LCSB): Machine Learning (Vlassis Group)
Disciplines :
Neurologie
Sciences informatiques
Auteur, co-auteur :
SALAMANCA MINO, Luis ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
VLASSIS, Nikos ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
DIEDERICH, Nico ;  Adobe Research
BERNARD, Florian ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
SKUPIN, Alexander  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Improved Parkinson’s disease classification from diffusion MRI data by Fisher vector descriptors
Date de publication/diffusion :
octobre 2015
Nom de la manifestation :
Medical Image Computing and computer assisted intervention
Lieu de la manifestation :
Munich, Allemagne
Date de la manifestation :
October, 5-9
Manifestation à portée :
International
Titre de l'ouvrage principal :
Improved Parkinson’s disease classification from diffusion MRI data by Fisher vector descriptors
Pagination :
119-126
Peer reviewed :
Peer reviewed
Projet FnR :
FNR9169303 - Development Of Novel Machine Learning Methodologies For Early Parkinson's Disease Diagnosis From Multi-modal Mri, 2014 (01/03/2015-28/02/2017) - Luis Salamanca Miño
Intitulé du projet de recherche :
Development of Novel Machine Learning methodologies for early Parkin- son’s disease diagnosis from multi-modal MRI
Disponible sur ORBilu :
depuis le 14 février 2016

Statistiques


Nombre de vues
249 (dont 10 Unilu)
Nombre de téléchargements
315 (dont 5 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu