[en] smoothed finite element method ; polyhedral elements ; polygonal elements ; numerical integration ; patch test ; linear smoothing ; cell based smoothed finite element method ; three dimensions ; conforming nodal integration
[en] It was observed in [1, 2] that the strain smoothing technique over higher order elements and arbitrary polytopes yields less accurate solutions than other techniques such as the conventional polygonal finite element method. In this work, we propose a linear strain smoothing scheme that improves the accuracy of linear and quadratic approximations over convex polytopes. The main idea is to subdivide the polytope into simplicial subcells and use a linear smoothing function in each subcell to compute the strain. This new strain is then used in the computation of the stiffness matrix. The convergence properties and accuracy of the proposed scheme are discussed by solving few benchmark problems. Numerical results show that the proposed linear strain smoothing scheme makes the approximation based on polytopes to deliver improved accuracy and pass the patch test to machine precision.
Researchers ; Professionals ; Students ; General public ; Others
FP7 ; 279578 - REALTCUT - Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery