[en] This note describes an information theory problem that arose from some analysis of quantum key distribution protocols. The problem seems very natural and is very easy to state but has not to our knowledge been addressed before in the information theory literature: suppose that we have a random bit string y of length n and we reveal k bits at random positions, preserving the order but without revealing the positions, how much information about y is revealed? We show that while the cardinality of the set of compatible y strings depends only on n and k, the amount of leakage does depend on the exact revealed x string. We observe that the maximal leakage, measured as decrease in the Shannon entropy of the space of possible bit strings corresponds to the x string being all zeros or all ones and that the minimum leakage corresponds to the alternating x strings. We derive a formula for the maximum leakage (minimal entropy) in terms of n and k. We discuss the relevance of other measures of information, in particular min-entropy, in a cryptographic context. Finally, we describe a simulation tool to explore these results.
Disciplines :
Sciences informatiques Mathématiques
Auteur, co-auteur :
ATASHPENDAR, Arash ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Roscoe, Bill; University of Oxford > Department of Computer Science
RYAN, Peter ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Information Leakage due to Revealing Randomly Selected Bits
Ryan, P.Y.A., Christianson, B.: Enhancements to prepare-and-measure based QKD protocols. In: Christianson, B., Malcolm, J., Stajano, F., Anderson, J., Bonneau, J. (eds.) Security Protocols 2013. LNCS, vol. 8263, pp. 123-133. Springer, Heidelberg (2013)
Hirschberg, D.S.: Bounds on the number of string subsequences. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 115-122. Springer, Heidelberg (1999)
Hirschberg, D.S., Regnier, M.: Tight bounds on the number of string subsequences. J. Discrete Algorithms 1(1), 123-132 (2000)
Calabi, L., Hartnett, W.: Some general results of coding theory with applications to the study of codes for the correction of synchronization errors. Inf. Control 15(3), 235-249 (1969)
Levenshtein, V.I.: Efficient reconstruction of sequences from their subsequences or supersequences. J. Comb. Theory Ser. A 93(2), 310-332 (2001)
Flaxman, A., Harrow, A.W., Sorkin, G.B.: Strings with maximally many distinct subsequences and substrings. Electron. J. Comb. 11(1), R8 (2004)
Flajolet, P., Guivarc’h, Y., Szpankowski, W., Vallée, B.: Hidden pattern statistics. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 152-165. Springer, Heidelberg (2001)
Middendorf, M.: Supersequences, runs, and cd grammar systems. Dev. Theor. Comput. Sci. 6, 101-114 (1994)
Lothaire, M.: Applied Combinatorics on Words, vol. 105. Cambridge University Press, Cambridge (2005)
Rahmann, S.: Subsequence combinatorics and applications to microarray production, DNA sequencing and chaining algorithms. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 153-164. Springer, Heidelberg (2006)
Mitzenmacher, M., et al.: A survey of results for deletion channels and related synchronization channels. Probab. Surv. 6, 1-33 (2009)
Swart, T.G., Ferreira, H.C.: A note on double insertion/deletion correcting codes. IEEE Trans. Inf. Theory 49(1), 269-273 (2003)
Liron, Y., Langberg, M.: A characterization of the number of subsequences obtained via the deletion channel. In: 2012 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 503-507. IEEE (2012)
Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3-55 (2001)
Maurer, U., Wolf, S.: Privacy amplification secure against active adversaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307-321. Springer, Heidelberg (1997)
Renner, R.S., Wolf, S.: Simple and tight bounds for information reconciliation and privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 199-216. Springer, Heidelberg (2005)
Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39(3), 733-742 (1993)
Cachin, C.: Entropy measures and unconditional security in cryptography. Ph.D. thesis, Swiss Federal Institute of Technology Zurich (1997)
Cachin, C., Maurer, U.M.: Linking information reconciliation and privacy amplification. J. Cryptology 10(2), 97-110 (1997)
Renyi, A.: On measures of entropy and information. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547-561 (1961)
MacKay, D.J.: Information theory, inference, and learning algorithms, vol. 7. Citeseer (2003)
Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210-229 (1988)
Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, pp. 106-112. ACM (1977)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)
Atashpendar, A., Ryan, P.Y.A.: Qkd and information leakage simulator, September 2014. http://www.qkdsimulator.com