Article (Périodiques scientifiques)
Global stability of relay feedback systems
GONCALVES, Jorge; Megretski, A.; Dahleh, M. A.
2001In IEEE Transactions on Automatic Control, 46 (4), p. 550--562
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Global Stability of Relay Feedback.pdf
Postprint Éditeur (1.91 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Global asymptotic stability; limit cycles; piecewise linear systems; Poincaré maps; relay feedback systems
Résumé :
[en] For a large class of relay feedback systems (RFS) there will be limit cycle oscillations. Conditions to check existence and local stability of limit cycles for these systems are well known. Global stability conditions, however, are practically nonexistent. This paper presents conditions in the form of linear matrix inequalities (LMIs) that, when satisfied, guarantee global asymptotic stability of limit cycles induced by relays with hysteresis in feedback with linear time-invariant (LTI) stable systems. The analysis consists in finding quadratic surface Lyapunov functions for Poincaré maps associated with RFS. These results are based on the discovery that a typical Poincaré map induced by an LTI flow between two hyperplanes can be represented as a linear transformation analytically parametrized by a scalar function of the state. Moreover, level sets of this function are convex subsets of linear manifolds. The search for quadratic Lyapunov functions on switching surfaces is done by solving a set of LMIs. Although this analysis methodology yields only a sufficient criterion of stability, it has proved very successful in globally analyzing a large number of examples with a unique locally stable symmetric unimodal limit cycle. In fact, it is still an open problem whether there exists an example with a globally stable symmetric unimodal limit cycle that could not be successfully analyzed with this new methodology. Examples analyzed include minimum-phase systems, systems of relative degree larger than one, and of high dimension. Such results lead us to believe that globally stable limit cycles of RFS frequently have quadratic surface Lyapunov functions.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
GONCALVES, Jorge ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Megretski, A.
Dahleh, M. A.
Langue du document :
Anglais
Titre :
Global stability of relay feedback systems
Date de publication/diffusion :
avril 2001
Titre du périodique :
IEEE Transactions on Automatic Control
ISSN :
0018-9286
Maison d'édition :
IEEE, Piscataway, Etats-Unis - New Jersey
Volume/Tome :
46
Fascicule/Saison :
4
Pagination :
550--562
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 10 mars 2015

Statistiques


Nombre de vues
162 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
66
citations Scopus®
sans auto-citations
65
OpenCitations
 
107
citations OpenAlex
 
154
citations WoS
 
95

Bibliographie


Publications similaires



Contacter ORBilu