Article (Périodiques scientifiques)
Symplectic Wick rotations between moduli spaces of 3-manifolds
scarinci, carlos; SCHLENKER, Jean-Marc
2014In Annali della Scuola Normale Superiore di Pisa: Classe di Scienze
Peer reviewed
 

Documents


Texte intégral
doublemaps.pdf
Postprint Éditeur (630.28 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Given a closed hyperbolic surface $S$, let $\cQF$ denote the space of quasifuchsian hyperbolic metrics on $S\times\R$ and $\cGH_{-1}$ the space of maximal globally hyperbolic anti-de Sitter metrics on $S\times\R$. We describe natural maps between (parts of) $\cQF$ and $\cGH_{-1}$, called ``Wick rotations'', defined in terms of special surfaces (e.g. minimal/maximal surfaces, CMC surfaces, pleated surfaces) and prove that these maps are at least $C^1$ smooth and symplectic with respect to the canonical symplectic structures on both $\cQF$ and $\cGH_{-1}$. Similar results involving the spaces of globally hyperbolic de Sitter and Minkowski metrics are also described. These 3-dimensional results are shown to be equivalent to purely 2-dimensional ones. Namely, consider the double harmonic map $\cH:T^*\cT\to\cTT$, sending a conformal structure $c$ and a holomorphic quadratic differential $q$ on $S$ to the pair of hyperbolic metrics $(m_L,m_R)$ such that the harmonic maps isotopic to the identity from $(S,c)$ to $(S,m_L)$ and to $(S,m_R)$ have, respectively, Hopf differentials equal to $i q$ and $-i q$, and the double earthquake map $\cE:\cT\times\cML\to\cTT$, sending a hyperbolic metric $m$ and a measured lamination $l$ on $S$ to the pair $(E_L(m,l), E_R(m,l))$, where $E_L$ and $E_R$ denote the left and right earthquakes. We describe how such 2-dimensional double maps are related to 3-dimensional Wick rotations and prove that they are also $C^1$ smooth and symplectic.
Disciplines :
Mathématiques
Auteur, co-auteur :
scarinci, carlos;  University of Nottingham > Mathematics
SCHLENKER, Jean-Marc ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Symplectic Wick rotations between moduli spaces of 3-manifolds
Date de publication/diffusion :
2014
Titre du périodique :
Annali della Scuola Normale Superiore di Pisa: Classe di Scienze
ISSN :
0391-173X
Maison d'édition :
SNS Pisa, Pisa, Italie
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 15 décembre 2014

Statistiques


Nombre de vues
130 (dont 5 Unilu)
Nombre de téléchargements
135 (dont 6 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu