Reference : Universal meromorphic approximation on Vitushkin sets
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Mathematics
http://hdl.handle.net/10993/1802
Universal meromorphic approximation on Vitushkin sets
English
Luh, Wolfgang [Universität Trier > Fachbereich IV - Mathematik]
Meyrath, Thierry mailto [Universität Trier > Fachbereich IV - Mathematik]
Niess, Markus [Katholische Universität Eichstätt-Ingolstadt]
2008
Journal of Contemporary Mathematical Analysis
43
6
365-371
Yes (verified by ORBilu)
International
1068-3623
[en] Universality ; rational and meromorphic approximation ; Vitushkin sets
[en] The paper proves the following result on universal meromorphic approximation: Given any unbounded sequence {λ_n} ⊂ \C, there exists a function φ, meromorphic on \C, with the following property. For every compact set K of rational approximation (i.e. Vitushkin set), and every function f, continuous on K and holomorphic in the interior of K, there exists a subsequence {n_k} of \N such that {φ(z + λ_{n_k})} converges to f(z) uniformly on K.
A similar result is obtained for arbitrary domains G \neq \C. Moreover, in case {λ_n} = {n} the function φ is frequently universal in terms of Bayart/Grivaux [3].
Researchers
http://hdl.handle.net/10993/1802
10.3103/S106836230806006X

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Limited access
LuhMeyrathNiess_JCMA_2008.pdfPublisher postprint608.93 kBRequest a copy

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.