Keywords :
RNA, Messenger; genetics; pharmacology; antagonists & inhibitors; metabolism; Arachidonate 5-Lipoxygenase; Base Sequence; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Hela Cells; Histone Deacetylases; Humans; Hydroxamic Acids; Molecular Sequence Data; Promoter Regions (Genetics); Protein Synthesis Inhibitors; RNA Polymerase II; Sp1 Transcription Factor
Abstract :
[en] The histone deacetylase inhibitor trichostatin A (TsA) potently induces 5-lipoxygenase (5-LO) promoter activity in reporter gene assays as well as 5-LO mRNA expression. We identified two proximal Sp1/Sp3 binding sites in the 5-LO gene promoter mediating the TsA effect in both 5-LO-negative HeLa cells and in 5-LO expressing Mono Mac 6 (MM6) cells, the tandem GC-boxes, by contrast, were not important for the TsA effect. TsA neither altered the protein expression levels of Sp1/Sp3 nor of the histone deacetylases HDAC1/2, nor did it apparently change the protein complex formation by these factors. Also, treatment of cells with TsA did not change the binding affinity of Sp1/Sp3 in cell extracts, as tested by DAPA analysis using probes containing the proximal GC boxes. However, in the living cell TsA induced Sp1, Sp3 and RNA polymerase II recruitment to the 5-LO promoter without changing the acetylation status of histone protein H4. Cotransfection studies suggest that both Sp1 and Sp3 can mediate the TsA effect. This is the first report demonstrating that Sp3 is involved in the regulation of 5-LO promoter activity. In summary, we show that TsA increases 5-LO promoter activity by the enhanced recruitment of Sp1 and Sp3 to the 5-LO promoter.
Scopus citations®
without self-citations
21