Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Meshfree volume-averaged nodal pressure methods for incompressible elasticity
HALE, Jack; Ortiz Benardin, Alejandro; Cyron, Christian J.
201422nd ACME Conference on Computational Mechanics
 

Documents


Texte intégral
abstract2.txt
Preprint Auteur (1.61 kB)
Télécharger
Annexes
incompressible.pdf
(7.61 MB)
Presentation
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
meshless; incompressible; volume-averaged; maximum-entropy
Résumé :
[en] We present a generalisation of the meshfree method for incompressible elasticity developed in Ortiz et al. (10.1016/j.cma.2010.02.013). We begin with the classical u-p mixed formulation of incompressible elasticity before eliminating the pressure using a volume-averaged nodal projection technique. This results in a family of projection methods of the type Q_p/Q_p-1 where Q_p is an approximation space of polynomial order p. These methods are particularly robust on low-quality tetrahedral meshes. Our framework is generic with respects to the type meshfree basis function used and includes various types of existing finite element methods such as B-bar and nodal-pressure techniques. As a particular example, we use maximum-entropy basis functions to build a scheme Q_1+/Q_1 with the displacement field being enriched with bubble-like functions for stability. The flexibility of the nodal placement in meshfree methods allows us to demonstrate the importance of this bubble-like enrichment for stability; with no bubbles the pressure field is liable to oscillations, whilst with bubbles the oscillation is eliminated. Interestingly however with half the bubbles removed, a scheme we call Q_1*/_Q_1, certain undesirable tendencies of the full bubble scheme are also eliminated. This has important applications in non-linear hyperelasticity. We also discuss some difficulties associated with moving to second-order maximum entropy shape functions associated with numerical integration errors.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
HALE, Jack  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Ortiz Benardin, Alejandro;  Universidad de Chile > Department of Mechanical Engineering
Cyron, Christian J.;  Yale University > Department of Biomedical Engineering
Langue du document :
Anglais
Titre :
Meshfree volume-averaged nodal pressure methods for incompressible elasticity
Date de publication/diffusion :
03 avril 2014
Nombre de pages :
1
Nom de la manifestation :
22nd ACME Conference on Computational Mechanics
Lieu de la manifestation :
Exeter, Royaume-Uni
Date de la manifestation :
2-4-2014 to 4-4-2014
Focus Area :
Computational Sciences
Intitulé du projet de recherche :
Development and Assessment of An Efficient Numerical Method for Simulation of Nearly Incompressible Large Deformations Problems in Solid Mechanics
Organisme subsidiant :
FONDECYT - Chile Fondo Nacional de Desarrollo Científico y Tecnológico
Imperial College/EPSRC
Marie Curie COFUND FNR
Disponible sur ORBilu :
depuis le 09 janvier 2014

Statistiques


Nombre de vues
123 (dont 9 Unilu)
Nombre de téléchargements
134 (dont 1 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu