Rapport de recherche interne (Rapports)
An extended finite element method with smooth nodal stress
Peng, Xuan; Kulasegaram, Sivakumar; BORDAS, Stéphane et al.
n.d.
 

Documents


Texte intégral
An extended finite element method with smooth nodal stress.pdf
Preprint Auteur (5.45 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
double-interpolation approximation; higher-order element; smooth nodal stress; extended finite element method; crack propagation
Disciplines :
Ingénierie civile
Auteur, co-auteur :
Peng, Xuan;  Institute of Mechanics and Advanced Materials > School of Engineering, Cardiff University
Kulasegaram, Sivakumar;  Institute of Mechanics and Advanced Materials > School of Engineering, Cardiff University
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Shengchuan, Wu;  Laboratory of Traction Power > Southwest Jiaotong University
Langue du document :
Anglais
Titre :
An extended finite element method with smooth nodal stress
Date de publication/diffusion :
n.d.
Maison d'édition :
Cardiff University, Cardiff, Royaume-Uni
Focus Area :
Computational Sciences
Projet européen :
FP7 - 289361 - INSIST - Integrating Numerical Simulation and Geometric Design Technology
Organisme subsidiant :
CE - Commission Européenne
Commentaire :
In this paper, we present a method to achieve smooth nodal stresses in the XFEM application. This method was developed by borrowing the ideas from the 'twice interpolating approximations' (TFEM) by Zheng et al (2011). The salient feature of the method is to introduce an 'average' gradient into the construction of the approximation, resulting in improved solution accuracy, both in the vicinity of the crack tip and in the far eld. Due to the higher-order polynomial basis provided by the interpolants, the new approximation enhances the smoothness of the solution without requiring an increased number of degrees of freedom. This is particularly advantageous for low-order elements and in fracture mechanics. Since the new approach adopts the same mesh discretization, i.e. simplex meshes, it can be easily extended to various problems and is easily implemented. We also discuss the increased bandwidth which is a major drawback of the present method. Numerical tests show that the new method is as robust as the XFEM, considering precision, model size and post-processing time. By comparing the results from the present method with the XFEM for crack propagation in homogeneous material, we conclude that for two-dimensional problems, the proposed method tends to be an e fficient alternative to the classical XFEM.
Disponible sur ORBilu :
depuis le 05 janvier 2014

Statistiques


Nombre de vues
248 (dont 5 Unilu)
Nombre de téléchargements
405 (dont 1 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu