Reference : Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Mathematics
Physical, chemical, mathematical & earth Sciences : Physics
Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications
Qiu, Jian mailto [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit >]
Zabzine, Maxim [Uppsala University]
Archivum Mathematicum
Masaryck University
Yes (verified by ORBilu)
Czech Republic
[en] Batalin Vilkovisky formalism ; super geometry ; graph complex
[en] These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV-formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible to both physicists and mathematicians.

File(s) associated to this reference

Fulltext file(s):

Open access
lecture-notes BV.pdfAuthor preprint498.81 kBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.