[en] Quantization ; Poisson-Lie group ; symplectic groupoid

[en] We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, that combines the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular we consider the case when the modular function is "multiplicatively integrable", i.e. when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on CP_n, seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU(n+1). We show that a bihamiltoniam system on CP_n defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.