[en] We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, that combines the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular we consider the case when the modular function is "multiplicatively integrable", i.e. when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on CP_n, seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU(n+1). We show that a bihamiltoniam system on CP_n defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.
Disciplines :
Mathematics
Author, co-author :
Bonechi, Francesco; FLorence University
Tarlini, Marco; Florence University
Ciccoli, Nicola; University of Perugia
QIU, Jian ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
External co-authors :
yes
Language :
English
Title :
Quantization of Poisson manifolds from the integrability of the modular function
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Similar publications
Sorry the service is unavailable at the moment. Please try again later.