Article (Scientific journals)
Quantization of Poisson manifolds from the integrability of the modular function
Bonechi, Francesco; Tarlini, Marco; Ciccoli, Nicola et al.
2014In Communications in Mathematical Physics, 331 (2), p. 851–885
Peer reviewed
 

Files


Full Text
Quantization of Poisson manifolds from the integrability of the modular function.pdf
Author preprint (430.25 kB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Quantization; Poisson-Lie group; symplectic groupoid
Abstract :
[en] We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, that combines the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular we consider the case when the modular function is "multiplicatively integrable", i.e. when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on CP_n, seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU(n+1). We show that a bihamiltoniam system on CP_n defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.
Disciplines :
Mathematics
Author, co-author :
Bonechi, Francesco;  FLorence University
Tarlini, Marco;  Florence University
Ciccoli, Nicola;  University of Perugia
QIU, Jian ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
External co-authors :
yes
Language :
English
Title :
Quantization of Poisson manifolds from the integrability of the modular function
Publication date :
2014
Journal title :
Communications in Mathematical Physics
ISSN :
0010-3616
Publisher :
Springer Science & Business Media B.V.
Volume :
331
Issue :
2
Pages :
851–885
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 20 December 2013

Statistics


Number of views
112 (8 by Unilu)
Number of downloads
25 (2 by Unilu)

Scopus citations®
 
13
Scopus citations®
without self-citations
5
OpenCitations
 
7
WoS citations
 
10

Bibliography


Similar publications



Contact ORBilu