Article (Scientific journals)
Metric regularity and Lipschitzian stability of parametric variational systems
ARAGÓN ARTACHO, Francisco Javier; Mordukhovich, B. S.
2010In Nonlinear Analysis: Theory, Methods and Applications, 72 (3-4), p. 1149-1170
Peer reviewed
 

Files


Full Text
am09-rev.pdf
Author postprint (275.75 kB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
generalized equation; metric regularity; parametric variational systems
Abstract :
[en] The paper concerns the study of variational systems described by parameterized generalized equations/variational conditions important for many aspects of nonlinear analysis, optimization, and their applications. Focusing on the fundamental properties of metric regularity and Lipschitzian stability, we establish various qualitative and quantitative relationships between these properties for multivalued parts/fields of parametric generalized equations and the corresponding solution maps for them in the framework of arbitrary Banach spaces of decision and parameter variables.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Systems Biochemistry (Fleming Group)
Disciplines :
Mathematics
Author, co-author :
ARAGÓN ARTACHO, Francisco Javier ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Mordukhovich, B. S.
Language :
English
Title :
Metric regularity and Lipschitzian stability of parametric variational systems
Publication date :
2010
Journal title :
Nonlinear Analysis: Theory, Methods and Applications
ISSN :
0362-546X
Volume :
72
Issue :
3-4
Pages :
1149-1170
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 15 November 2013

Statistics


Number of views
56 (7 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
31
Scopus citations®
without self-citations
25
OpenCitations
 
29
OpenAlex citations
 
39
WoS citations
 
27

Bibliography


Similar publications



Contact ORBilu