Paper published in a book (Scientific congresses, symposiums and conference proceedings)
Local vs. Global Search Strategies in Evolutionary GRID-based Conformational Sampling & Docking
Horvath, Dragos; Brillet, Lorraine; Roy, Sylvaine et al.
2009In 2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5
Peer reviewed
 

Files


Full Text
Local vs. Global Search Strategies.pdf
Author postprint (708.44 kB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] Conformational sampling, the computational prediction of the experimental geometries of small proteins (folding) or of protein-ligand complexes (docking), is often cited as one of the most challenging multimodal optimization problems. Due to the extreme ruggedness of the energy landscape as a function of geometry, sampling heuristics must rely on an appropriate trade-off between global and local searching efforts. A previously reported "planetary strategy", a generalization of the classical island model used to deploy a hybrid genetic algorithm on computer grids, has shown a good ability to quickly discover low-energy geometries of small proteins and sugars, and sometimes even pinpoint their native structures - although not reproducibly. The procedure focused on broad exploration and used a tabu strategy to avoid revisiting the neighborhood of known solutions, at the risk of "burying" important minima in overhastily set tabu areas. The strategy reported here, termed "divide-and-conquer planetary model" couples this global search procedure to a local search tool. Grid nodes are now shared between global and local exploration tasks. The phase space is cut into "cells" corresponding to a specified sampling width for each of the N degrees of freedom. Global search locates cells containing low-energy geometries. Local searches pinpoint even deeper minima within a cell. Sampling width controls the important trade-off between the number of cells and the local search effort needed to reproducibly sample each cell. The probability to submit a cell to local search depends on the energy of the most stable geometry found within. Local searches are allotted limited resources and are not expected to converge. However, as long as they manage to discover some deeper local minima, the explored cell remains eligible for further local search, now relying on the improved energy level to enhance chances to be picked again. This competition prevents the system to waste too much effort in fruitless local searches. Eventually, after a limited number of local searches, a cell will be "closed" and used - first as "seed", later as tabu zone - to bias future global searches. Technical details and some folding and docking results will be discussed.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Computer science
Author, co-author :
Horvath, Dragos;  Univ Strasbourg, CNRS, UMR 7177, Lab Infochim, Strasbourg, France.
Brillet, Lorraine
Roy, Sylvaine
Conilleau, Sebastien
TANTAR, Alexandru-Adrian ;  INRIA Futurs -- LIFL/CNRS UMR 8022
Boisson, Jean-Charles
Melab, Nouredine
Talbi, El-Ghazali
Language :
English
Title :
Local vs. Global Search Strategies in Evolutionary GRID-based Conformational Sampling & Docking
Publication date :
2009
Event name :
IEEE Congress on Evolutionary Computation
Event organizer :
IEEE
Event place :
Trondheim, Norway
Event date :
MAY 18-21, 2009
Main work title :
2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5
Publisher :
Ieee, New York, Unknown/unspecified
ISBN/EAN :
978-1-4244-2958-5
Collection name :
IEEE Congress on Evolutionary Computation
Pages :
247-254
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 12 November 2013

Statistics


Number of views
69 (0 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
4
Scopus citations®
without self-citations
1
OpenAlex citations
 
5
WoS citations
 
3

Bibliography


Similar publications



Contact ORBilu