ASTRID, M., GHORBEL, E., & AOUADA, D. (October 2024). Statistics-aware Audio-visual Deepfake Detector [Paper presentation]. IEEE International Conference on Image Processing (ICIP 2024), Abu Dhabi, United Arab Emirates. Peer reviewed |
ASTRID, M., GHORBEL, E., & AOUADA, D. (August 2024). Targeted Augmented Data for Audio Deepfake Detection [Paper presentation]. 32nd European Signal Processing Conference (EUSIPCO 2024), Lyon, France. Peer reviewed |
ASTRID, M., Zaheer, M. Z., AOUADA, D., & Lee, S.-I. (2024). Exploiting autoencoder’s weakness to generate pseudo anomalies. Neural Computing and Applications. doi:10.1007/s00521-024-09790-z Peer Reviewed verified by ORBi |
ASTRID, M., GHORBEL, E., & AOUADA, D. (2024). Detecting Audio-Visual Deepfakes with Fine-Grained Inconsistencies [Paper presentation]. British Machine Vision Conference, Glasgow, United Kingdom. Peer reviewed |
ASTRID, M., & Lee, S.-I. (29 October 2023). Assembling Three One-Camera Images for Three-Camera Intersection Classification. ETRI Journal, 45 (5), 862-873. doi:10.4218/etrij.2023-0100 Peer Reviewed verified by ORBi |
SHNEIDER, C., SINHA, N., JAMROZIK, M. L., ASTRID, M., ROSTAMI ABENDANSARI, P., KACEM, A., SHABAYEK, A. E. R., & AOUADA, D. (19 April 2023). Compression of Deep Neural Networks for Space Autonomous Systems [Poster presentation]. Luxembourg Space Resources Week 2023, Luxembourg, Luxembourg. doi:10.5281/zenodo.7931156 |
Zaheer, M. Z., Mahmood, A., ASTRID, M., & Lee, S.-I. (2023). Clustering Aided Weakly Supervised Training to Detect Anomalous Events in Surveillance Videos. IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2023.3274611 Peer Reviewed verified by ORBi |